事务对隔离性的原理理解

  • 脏读:两个事务并行,A事务做的一切,B事务就可以立刻知道。
  • 不可重复读:一个事务受到另一个事务的影响导致连续的select不统一,RU、RC都会导致。
  • 幻读:一般的数据库在可重复读情况的时候,无法屏蔽其他事务insert的数据(为什么? 因为隔离性实现是对数据加锁完成的,而insert待插入的数据因为并不存在,那么一般加锁无法屏蔽这类问题),会造成虽然大 部分内容是可重复读的,但是insert的数据在可重复读情况被读取出来,导致多次查找时,会多查找出来新的记录,就如同产 生了幻觉。这种现象,叫做幻读(phantom read)。

让我们对隔离性做深入理解

我们知道隔离性分为:

  • RU读未提交:会发生脏读,不可重复读,幻读,无需读锁。
  • RC读已提交:不会发生脏读,但是不可重复读,幻读,无需读锁。
  • RR可重复读:不会发生脏读、幻读,不可重复读,无需读锁。
  • SE可串行化:不会发生脏读、幻读,不可重复读,但是需读锁。
  • 模仿MVCC操作了解RR于RC的意义

多版本并发控制( MVCC )是一种用来解决 读-写冲突 的无锁并发控制

为事务分配单向增长的事务ID,为每个修改保存一个版本,版本与事务ID关联,读操作只读该事务开始前的数据库的快照。所以 MVCC 可以为数据库解决以下问题

  • 在并发读写数据库时,可以做到在读操作时不用阻塞写操作,写操作也不用阻塞读操作,提高了数据库并发读 写的性能
  • 同时还可以解决脏读,幻读,不可重复读等事务隔离问题,但不能解决更新丢失问题

理解 MVCC 需要知道三个前提知识:

  1. 3个记录隐藏字段
  2. undo 日志
  3. Read View

一、三个隐藏字段

  • DB_TRX_ID :6 byte,最近修改( 修改/插入 )事务ID,记录创建这条记录/最后一次修改该记录的事务ID
  • DB_ROLL_PTR : 7 byte,回滚指针,指向这条记录的上一个版本(简单理解成,指向历史版本就行,这些数据一 般在 undo log 中)name age DB_TRX_ID(创建该记录的事务 ID) DB_ROW_ID(隐式主 键)
  • DB_ROLL_PTR(回滚指 针) 张三 28 null 1 null DB_ROW_ID : 6 byte,隐含的自增ID(隐藏主键),如果数据表没有主键, InnoDB 会自动以 DB_ROW_ID 产生一 个聚簇索引
  • 补充:实际还有一个删除flag隐藏字段, 既记录被更新或删除并不代表真的删除,而是删除flag变了

我们看似一个表只有这两列数据,实际是

有3列隐藏列

我们假设创建该记录的事务ID为9,隐式主键,我们就默认设置成1。第一条记录也没有其他版本,我们 设置回滚指针为null。

二、undo 日志

这里不想细讲,但是有一件事情得说清楚, MySQL 将来是以服务进程的方式,在内存中运行。我们之前所讲的所有 机制:索引,事务,隔离性,日志等,都是在内存中完成的,即在 MySQL 内部的相关缓冲区中,保存相关数据,完 成各种判断操作。然后在合适的时候,将相关数据刷新到磁盘当中的。

三、Read View

每一个事物一般来说都拥有一个Read View结构体这个结构体是我们读写不同表的关键结构体,等等细讲。

开始理解

先介绍undo工作原理,我们可以理解这是一块缓冲区,临时存放数据的地方,每次执行写操作后的对应动作,在写前会先留存前数据,后再对表行写入新数据。

假设现在来了个事务10修改了该行数据,需将id=1改为id=2:先将当前的数据行保存一份放入undo,然后再改变id值,并且改变隐藏列的DB_TR_ID改为当前事务:9->10,DB_ROLL_RLP:null->0x1111(刚拷贝在undo中的地址)。

类似写时拷贝机制。

然后事务10commit提交信息,释放该行锁。

假设又来了个事务11修改了该行数据:需将name='张三'->'zhangshan',再次先保存当前行数据到undo,然后才改变name值,并且改变隐藏列的DB_TR_ID改为当前事务:10-11,DB_ROLL_RLP

:0x1111->0x1222((刚拷贝在undo中的地址));

事务11提交,释放锁。

这样,我们就有了一个基于链表记录的历史版本链。所谓的回滚,无非就是用历史数据,覆盖当前数据。一个一个版本,我们可以称之为一个一个的快照


上面是以更新(`upadte`)主讲的,如果是`delete`呢?一样的,别忘了,删数据不是清空,而是设置flag为删除即可。也可以形成版本。

如果是`insert`呢?因为`insert`是插入,也就是之前没有数据,那么`insert`也就没有历史版本。但是一般为了回滚操作,insert的数据也是要被放入undo log中,如果当前事务commit了,那么这个undo log 的历史insert记录就可以被 清空了。

总结一下也就是我们可以理解成,`update`和`delete`可以形成版本链,`insert`暂时不考虑。


在select读取数据时候分为读新数据与undo中的旧版本数据

当前读:读取最新的记录,就是当前读。增删改,都叫做当前读,select也有可能当前读,比如:select lock in share mode(共享锁), select for update 

快照读:读取历史版本(一般而言),就叫做快照读。

总而言之,对最新的版本增删查改操作我们称之为当前读,而查select也能当前读,但是在RC,RR下一般都是快照。

再介绍Read View的

Read View就是事务进行 快照读 操作的时候生产的 读视图 (Read View),在该事务执行的快照读的那一刻,会生成数 据库系统当前的一个快照,记录并维护系统当前活跃事务的ID(当每个事务开启时,都会被分配一个ID, 这个ID是递增 的,所以最新的事务,ID值越大)

class ReadView {
// 省略...
private:
/** 高水位,大于等于这个ID的事务均不可见*/
trx_id_t m_low_limit_id
/** 低水位:小于这个ID的事务均可见 */
trx_id_t m_up_limit_id;
/** 创建该 Read View 的事务ID*/
trx_id_t m_creator_trx_id;
/** 创建视图时的活跃事务id列表*/
ids_t m_ids;
/** 配合purge,标识该视图不需要小于m_low_limit_no的UNDO LOG,
* 如果其他视图也不需要,则可以删除小于m_low_limit_no的UNDO LOG*/
trx_id_t m_low_limit_no;
/** 标记视图是否被关闭*/
bool m_closed;
// 省略...
};m_ids; //一张列表,用来维护Read View生成时刻,系统正活跃的事务ID
up_limit_id; //记录m_ids列表中事务ID最小的ID(没有写错)
low_limit_id; //ReadView生成时刻系统尚未分配的下一个事务ID,也就是目前已出现过的事务ID的最大值+1(也没有写错)
creator_trx_id //创建该ReadView的事务ID

当一个事务启动时,并不会直接获得readview,而是在第一次对行快照读的时候才会获得readview。

readview并不是一行版本串一个readview,而是整个事务用一个readview,readvice完成读取。

左手版本串,右手readview我们就可以存在读写无锁并发分访问的原理

重新对该表修改数据

  • 事务4:修改name(张三) 变成name(李四)
  • 当 事务2 对某行数据执行了 快照读 ,数据库为该行数据生成一个 Read View 读视图
//事务2的 Read View
m_ids; // 并行运行的事务id有:1,3
up_limit_id; // 快照截取的m_ids最小id为:1
low_limit_id; // 4 + 1 = 5,原因:ReadView生成时刻,系统尚未分配的下一个事务ID
creator_trx_id // 该readview所属事务id:2

此时版本链是:

只有事务4修改过该行记录,并在事务2执行快照读生成readview前,就提交了事务。

我们的事务2在快照读该行记录的时候,就会拿该行记录的 DB_TRX_ID 去跟up_limit_id,low_limit_id和活跃事务ID列表(m_ids) 进行比较,判断当前事务2能看到该记录的版本。

DB_TRX_ID(4)< up_limit_id(1) ? 不小于,下一步
DB_TRX_ID(4)>= low_limit_id(5) ? 不大于,下一步
m_ids.contains(DB_TRX_ID) ? 不包含,说明,事务4不在当前的活跃事务中。
//故,事务4的更改,应该看到。
//所以事务2能读到的最新数据记录是事务4所提交的版本,而事务4提交的版本也是全局角度上最新的版本

能则返回,不能则回滚,继续判断是否能看到。

当前读和快照读在RR,RC级别下

select * from user lock in share mode ,以加共享锁方式进行读取,对应的就是当前读。此处只作为测
试使用,

RR 与 RC的本质区别--readview,每次快照读是否更新

  • 正是Read View生成时机的不同,从而造成RC,RR级别下快照读的结果的不同
  • 在RR级别下的某个事务的对某条记录的第一次快照读会创建一个快照及Read View, 将当前系统活跃的其他事务 记录起来
  • 此后在调用快照读的时候,还是使用的是同一个Read View,所以只要当前事务在其他事务提交更新之前使用过 快照读,那么之后的快照读使用的都是同一个Read View,所以对之后的修改不可见;
  • 即RR级别下,快照读生成Read View时,Read View会记录此时所有其他活动事务的快照,这些事务的修改对于 当前事务都是不可见的。而早于Read View创建的事务所做的修改均是可见
  • 而在RC级别下的,事务中,每次快照读都会新生成一个快照和Read View, 这就是我们在RC级别下的事务中可以 看到别的事务提交的更新的原因
  • 总之在RC隔离级别下,是每个快照读都会生成并获取最新的Read View;而在RR隔离级别下,则是同一个事务 中的第一个快照读才会创建Read View, 之后的快照读获取的都是同一个Read View。
  • 正是RC每次快照读,都会形成Read View,所以,RC才会有不可重复读问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/212212.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

leetcode刷题日志-70爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 示例 1&#xff1a; 输入&#xff1a;n 2 输出&#xff1a;2 解释&#xff1a;有两种方法可以爬到楼顶。 1 阶 1 阶2 阶 示例 2&#xff1a; …

【C++】泛型编程 ⑭ ( 类模板示例 - 数组类模板 | 容器思想 | 自定义类可拷贝 - 深拷贝与浅拷贝 | 自定义类可打印 - 左移运算符重载 )

文章目录 一、容器思想1、自定义类可拷贝 - 深拷贝与浅拷贝2、自定义类可拷贝 - 代码示例3、自定义类可打印 - 左移运算符重载 二、代码示例1、Array.h 头文件2、Array.cpp 代码文件3、Test.cpp 主函数代码文件4、执行结果 一、容器思想 1、自定义类可拷贝 - 深拷贝与浅拷贝 上…

【分布式】分布式事务及其解决方案

目录 一、分布式事务二、分布式事务的解决方案1. 全局事务&#xff08;1&#xff09;DTP模型&#xff08;2&#xff09; 两阶段提交协议&#xff08;2PC&#xff09;原理二阶段提交的缺点 &#xff08;3&#xff09;三阶段提交协议&#xff08;3PC&#xff09;原理 2. 基于可靠…

计算机视觉项目-人脸识别与检测

&#x1f60a;&#x1f60a;&#x1f60a;欢迎来到本博客&#x1f60a;&#x1f60a;&#x1f60a; 本次博客内容将继续讲解关于OpenCV的相关知识 &#x1f389;作者简介&#xff1a;⭐️⭐️⭐️目前计算机研究生在读。主要研究方向是人工智能和群智能算法方向。目前熟悉深度学…

机器学习---最大似然估计和贝叶斯参数估计

1. 估计 贝叶斯框架下的数据收集&#xff0c;在以下条件下我们可以设计一个可选择的分类器 : P(wi) (先验)&#xff1b;P(x | wi) (类条件密度) 但是。我们很少能够完整的得到这些信息! 从一个传统的样本中设计一个分类器&#xff1a; ①先验估计不成问题 ②对类条件密度…

mysql:修改密码的几种方式

背景 当我们 brew install mysql 新安装 mysql 的时候&#xff0c;是没有密码的&#xff0c;我们可以直接通过 mysql -u root 连接上。但是密码还是要设置的&#xff0c;一是为了安全&#xff0c;二是有些数据库软件如 Sequel 连接都是必须要密码的&#xff0c;接下来我们来看…

基于JavaWeb+SSM+Vue校园水电费管理小程序系统的设计和实现

基于JavaWebSSMVue校园水电费管理小程序系统的设计和实现 源码获取入口Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 Lun文目录 摘 要 III Abstract 1 1 系统概述 2 1.1 概述 2 1.2课题意义 3 1.3 主要内容 3…

朋友圈被折叠怎么解决?

最近有客户咨询发的朋友圈老被折叠怎么办&#xff0c;正常发都被折叠。一些朋友在微信做私域的&#xff0c;在朋友圈日常营销是必不可少的&#xff0c;如何避免这种问题和怎么解决呢&#xff1f; 为什么会被折叠&#xff1f; 1.据了解&#xff0c;朋友圈内容折叠功能是主要针对…

Spring第一课,了解IDEA里面的文件,回顾Cookie和Session,获取Session,Cookie,Header的方式

目录 IDEA第一课&#xff08;熟悉里面内容&#xff09; 建立连接 -RequestMapping 路由映射 请求 1.传递单个参数​编辑 2.多个参数​编辑 3.传递数组 4.传递一个集合&#xff0c;但是这里我们传递的时候发生了500的错误 简单介绍JSON 回顾Cookie和S…

github批量仓库克隆,git clone某个用户的所有仓库

利用github的api工具&#xff0c; 首先拿到用户名为kevin的所有仓库的url&#xff1a; curl "https://api.github.com/users/kevin/repos?per_page100&&page1" | grep -w clone_url >clone.txt过滤一下&#xff1a; grep -o https://[^"]* clone…

java.lang.ArrayIndexOutOfBoundsException: (数组越界异常)

java.lang.ArrayIndexOutOfBoundsException: &#xff08;数组越界异常&#xff09; 如何解决数组越界异常&#xff1f;1.1条件判断1.2循环结构1.3 try-catch&#xff08;异常捕获&#xff09;避免数组越界异常的方法&#xff1a;数组越界异常的调试和排查技巧&#xff1a; 当我…

代码随想录算法训练营第五十二天|300.最长递增子序列 674. 最长连续递增序列 718. 最长重复子数组

文档讲解&#xff1a;代码随想录 视频讲解&#xff1a;代码随想录B站账号 状态&#xff1a;看了视频题解和文章解析后做出来了 300.最长递增子序列 class Solution: # 2516 ms, faster than 64.96%def lengthOfLIS(self, nums: List[int]) -> int:n len(nums)dp [1] * n…