【论文阅读笔记】Smil: Multimodal learning with severely missing modality

Ma M, Ren J, Zhao L, et al. Smil: Multimodal learning with severely missing modality[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 35(3): 2302-2310.[开源]

本文的核心思想是探讨和解决多模态学习中的一个重要问题:在训练和测试数据中严重缺失某些模态时,如何有效进行学习。具体来说,这里的“严重缺失”指的是在多达90%的训练样本中缺少一些模态信息。在过去的研究中,大多关注于如何处理测试数据的模态不完整性,而对于训练数据的模态不完整性,尤其是严重缺失的情况,探讨较少。文章提出了一种新的方法——SMIL(Severely Missing Modality in Multimodal Learning),使用贝叶斯元学习来同时实现两个目标:灵活性(在训练、测试或两者中处理缺失模态)和效率(从不完整的模态中高效学习)。核心思想是通过扰动潜在特征空间,使单一模态的嵌入能够近似全模态的嵌入。为了验证这一方法的有效性,作者在三个流行的基准数据集(MM-IMDb, CMU-MOSI 和 avMNIST)上进行了一系列实验。结果表明,SMIL在处理严重模态缺失的多模态学习问题方面,相比现有方法和生成型基准(如自编码器和生成对抗网络)具有更好的性能。

image-20231123084815031

  • 模态重建

模态重建是通过使用重建网络来实现的。该网络利用可用的模态信息来生成缺失模态的近似值,从而在潜在特征空间中生成完整的数据,并促进两个方面的灵活性。一方面,该模型可以通过使用完整和不完整的数据进行联合训练来挖掘混合数据的全部潜力。另一方面,在测试时,通过打开或关闭特征重建网络,该模型可以以统一的方式处理不完整或完整的输入。具体来说,重建网络被训练来预测先验权重的权重,而不是直接生成缺失模态。这是通过学习一组可以使用 K-means 或 PCA 在所有模态完整样本之间聚类的模态先验 M 来实现的。然后,通过计算模态先验的加权和来重建缺失模态。这种方法可以有效地处理缺失模态问题,并在实验中取得了良好的结果。

  • 不确定性引导特征正则化

该网络通过对特征进行扰动来评估数据的不确定性,并将不确定性评估用作特征正则化,以克服模型和数据偏差。具体来说,该网络使用一组随机噪声向量来扰动输入特征,并计算每个扰动的输出的方差。然后,将方差用作特征正则化的权重,以减少特征之间的差异。这种方法可以有效地处理低质量和不完整的特征,并提高多模态模型的鲁棒性和泛化能力。与之前的确定性正则化方法相比,不确定性引导特征正则化可以显著提高模型的容量和性能。

  • 贝叶斯元学习框架

通过利用贝叶斯元学习框架来联合优化所有网络实现的。具体来说,主网络 f θ f_{\theta} fθ在重构 f ϕ ϕ f_{\phi_{\phi}} fϕϕ网络和正则化 f ϕ r f_{\phi_{r}} fϕr网络的帮助下在 D m D_m Dm上进行元训练。然后,在 D f D_f Df上对更新后的主网络 f θ ∗ f_{\theta^{*}} fθ进行元测试。最后,通过梯度下降元更新网络参数 { θ , ϕ c , ϕ r } \left\{\boldsymbol{\theta}, \boldsymbol{\phi}_{c}, \boldsymbol{\phi}_{r}\right\} {θ,ϕc,ϕr}。该框架旨在优化目标函数,即最小化 L ( D f ; θ ∗ , ψ ) \mathcal{L}\left(\mathcal{D}^{f} ; \boldsymbol{\theta}^{*}, \boldsymbol{\psi}\right) L(Df;θ,ψ),其中 θ ∗ = θ − α ∇ θ L ( D m ; ψ ) \boldsymbol{\theta}^{*}=\boldsymbol{\theta}-\alpha \nabla_{\boldsymbol{\theta}} \mathcal{L}\left(\mathcal{D}^{m} ; \boldsymbol{\psi}\right) θ=θαθL(Dm;ψ) ψ = { ϕ c , ϕ r } \psi=\left\{\phi_{c}, \phi_{r}\right\} ψ={ϕc,ϕr}表示重构和正则化网络参数的组合。贝叶斯元学习的目标是最大化条件似然: log ⁡ p ( Y ∣ X ; θ ) \log p(\mathbf{Y} \mid \mathbf{X} ; \boldsymbol{\theta}) logp(YX;θ)。然而,解决它涉及到不可行的真后验 p ( z ∣ X ) p(z|X) p(zX)。因此,通过一种分摊分布 q ( z ∣ X ; ψ ) q(z|X;ψ) q(zX;ψ)来近似真后验分布,并且近似的下限形式可以定义为 L θ , ψ = E q ( z ∣ X ; θ , ψ ) [ log ⁡ p ( Y ∣ X , z ; θ ) ] − KL ⁡ [ q ( z ∣ X ; ψ ) ∥ p ( z ∣ X ) ] . \begin{aligned} \mathcal{L}_{\boldsymbol{\theta}, \boldsymbol{\psi}}=\boldsymbol{E}_{q(\mathbf{z} \mid \mathbf{X} ; \boldsymbol{\theta}, \boldsymbol{\psi})}[\log p(\mathbf{Y} \mid \mathbf{X}, \mathbf{z} ; \boldsymbol{\theta})]- & \operatorname{KL}[q(\mathbf{z} \mid \mathbf{X} ; \boldsymbol{\psi}) \| p(\mathbf{z} \mid \mathbf{X})] . \end{aligned} Lθ,ψ=Eq(zX;θ,ψ)[logp(YX,z;θ)]KL[q(zX;ψ)p(zX)].

我们通过蒙特卡罗(MC)抽样来最大化这个下界

image-20231123090948982

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/212516.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Electron+VUE3开发简版的编辑器【文件预览】

简版编辑器的功能主要是: 打开对话框,选择文件后台读取文件文件前端展示文件内容。主要技术栈是VUE3、Electron和Nodejs,VUE3做页面交互,Electron提供一个可执行Nodejs的环境以及支撑整个应用的环境,nodeJS负责读取文件内容。 环境配置、安装依赖这些步骤就不再叙述了。 …

SSM家具个性定制管理系统开发mysql数据库web结构java编程计算机网页源码eclipse项目

一、源码特点 SSM 家具个性定制管理系统是一套完善的信息系统,结合springMVC框架完成本系统,对理解JSP java编程开发语言有帮助系统采用SSM框架(MVC模式开发),系统具有完整的源代码和数据库,系统主要采用…

黑马点评12-实现好友关注/取关功能,查看好友共同关注列表

好友关注 数据模型 数据库中的tb_follow记录博主与粉丝的关系 tb_follow表对应的实体类 Data EqualsAndHashCode(callSuper false) Accessors(chain true) TableName("tb_follow") public class Follow implements Serializable {private static final long ser…

嵌入式系统在工业自动化中的应用

嵌入式系统在工业自动化中的应用非常广泛,它们通过集成控制和实时响应能力,实现了生产线的自动化、智能化和高效化。以下将详细介绍嵌入式系统在工业自动化中的几个重要应用领域,并提供一些示例代码。 1. PLC(可编程逻辑控制器&a…

Web服务器(go net/http) 处理Get、Post请求

大家好 我是寸铁👊 总结了一篇Go Web服务器(go net/http) 处理Get、Post请求的文章✨ 喜欢的小伙伴可以点点关注 💝 前言 go http请求如何编写简单的函数去拿到前端的请求(Get和Post) 服务器(后端)接收到请求后,又是怎么处理请求&#xff0c…

【网络奇缘】- 计算机网络|分层结构|ISO模型

🌈个人主页: Aileen_0v0🔥系列专栏: 一见倾心,再见倾城 --- 计算机网络~💫个人格言:"没有罗马,那就自己创造罗马~" 目录 计算机网络分层结构 OSI参考模型 OSI模型起源 失败原因: OSI模型组成 协议的作用 📝全文…

4.常见面试题--操作系统

特点:并发性、共享性、虚拟性、异步性。 Windows 和 Linux 内核差异 对于内核的架构⼀般有这三种类型: ● 宏内核,包含多个模块,整个内核像⼀个完整的程序; ● 微内核,有⼀个最⼩版本的内核&#xff0…

Python----类对象和实例对象

目录 一.类和类的实例 二.类属性和实例属性 三.私有属性和公有属性 四.静态方法和类方法 五.__init__方法,__new__方法和__del__方法: 六.私有方法和公有方法 七.方法的重载 八.方法的继承 九.方法的重写 十.对象的特殊方法 十一.对象的引用&a…

EPT-Net:用于3D医学图像分割的边缘感知转换器

EPT-Net: Edge Perception Transformer for 3D Medical Image Segmentation EPT-Net:用于3D医学图像分割的边缘感知转换器背景贡献实验方法Dual Positional Transformer(双位置Transformer)Learnable Patch EmbeddingVoxel Spacial Positiona…

HBuilderX前端软件社区+Thinkphp后端源码

HBuilderX前端软件社区thinkphp后端源码,搭建好后台在前端找到 util 这个文件把两个js文件上面的填上自己的域名,登录HBuilderX账号没有账号就注册账号然后上传文件即可。打包选择发行 可以打包app或h5等等 后端设置运行目录为public(重要),…

解决LocalDateTime传输前端为时间的数组

问题出现如下: 问题出现原因: 默认序列化情况下会使用SerializationFeature.WRITE_DATES_AS_TIMESTAMPS。使用这个解析时就会打印出数组。 解决方法: 我在全文搜索处理方法总结如下: 1.前端自定义函数来书写 ,cols: [[ //表头{…

ESP32之避障

ESP32之避障 图片 程序 int Led27;//定义LED 接口 int buttonpin4; //定义光遮断传感器接口 int val;//定义数字变量val void setup() { pinMode(Led,OUTPUT);//定义LED 为输出接口 pinMode(buttonpin,INPUT);//定义避障传感器为输出接口 } void loop() {Serial.begin(9600);…