算法笔记:OPTICS 聚类

1 基本介绍

  • OPTICS(Ordering points to identify the clustering structure)是一基于密度的聚类算法
    • OPTICS算法是DBSCAN的改进版本
      • 在DBCSAN算法中需要输入两个参数: ϵ 和 MinPts ,选择不同的参数会导致最终聚类的结果千差万别,因此DBCSAN对于输入参数过于敏感
      •  机器学习笔记:DBSCAN_dbscan参数选取-CSDN博客
    • OPTICS算法的提出就是为了帮助DBSCAN算法选择合适的参数,降低输入参数的敏感度
      • OPTICS主要针对输入参数ϵ过敏感做的改进
      • OPTICS和DBSCNA的输入参数一样( ϵ 和 MinPts  ),虽然OPTICS算法中也需要两个输入参数,但该算法对 ϵ 输入不敏感(一般将 ϵ 固定为无穷大)【不太清楚为什么不直接不输入ε呢?】
      • 同时该算法中并不显式的生成数据聚类,只是对数据集合中的对象进行排序,得到一个有序的对象列表
        • 通过该有序列表,可以得到一个决策图
        • 通过决策图可以不同 ϵ 参数的数据集中检测簇集,
      • 即:先通过固定的 MinPts  和无穷大的 ϵ 得到有序列表,然后得到决策图,通过决策图可以知道当 ϵ 取特定值时(比如 ϵ=3 )数据的聚类情况。

1.1 和DBSCAN相似的概念

  • ε、minPts、核心点、边缘点、噪点、密度直达(直接密度可达)、密度可达、密度相连 这些概念可见“机器学习笔记:DBSCAN_dbscan参数选取-CSDN博客

 1.2 OPTICS新的定义

1.2.1 核心距离

换句话说,如果x不是核心点,那么cd(x)就没有意义

1.2.2 可达距离

  • 也是,如果x不是核心点,那么rd(y,x)没有意义
  • 如果y在x的ε领域内,那么rd(y,x)=cd(x);如果在x的ε领域外,那么就是d(y,x)

1.3 算法思想

假设数据集为X=\{x_1,x_2,\cdots,x_m\},OPTICS算法的目标是输出一个有序排列,以及每个元素的两个属性值:核心距离,可达距离。

1.3.1 OPTICS算法的数据结构

1.4 算法流程

  • 输入:数据集X=\{x_1,x_2,\cdots,x_m\},领域参数ε(一般等于∞),MinPts
  1. 创建两个队列,有序队列O和结果队列R
    • 有序队列用来存储核心对象及其该核心对象的密度直达对象,并按可达距离升序排列
      • 理解为待处理的数据
    • 结果队列用来存储样本点的输出次序
      • 已经处理完的数据
  2. 如果D中所有点都处理完毕或者不存在核心点,则算法结束。否则:
    1. 选择一个未处理(即不在结果队列R中)且为核心对象的样本点 p
    2. 将 p 放入结果队列R中,并从X中删除 p
    3. 找到 X 中 p 的所有密度直达样本点 x,计算 x 到 p 的可达距离
      1. 如果 x 不在有序队列O 中,则将 x 以及可达距离放入 O 中
      2. 若 x 在O中,则如果 x 新的可达距离更小,则更新 x 的可达距离
    4. 最后对O中数据按可达距离从小到大重新排序。
  3. 如果有序队列O为空,则回到步骤2,否则:
    1. 取出O 中第一个样本点 y(即可达距离最小的样本点),放入 R 中
    2. 从 D 和 O 中删除 y
    3. 如果 y 不是核心对象,则重复步骤 3(即找 O 中剩余数据可达距离最小的样本点)
    4. 如果 y 是核心对象,则
      1. 找到 y 在 D 中的所有密度直达样本点
      2. 计算到 y 的可达距离
      3. 所有 y 的密度直达样本点更新到 O 中
      4. 对O中数据按可达距离从小到大重新排序。
  4. 重复步骤2、3,直到算法结束。
  5. 最终可以得到一个有序的输出结果,以及相应的可达距离。

1.5 举例

样本数据集为:D = {[1, 2], [2, 5],  [8, 7], [3, 6],  [8, 8], [7, 3], [4,5]}

假设eps = inf,min_samples=2,则数据集D在OPTICS算法上的执行步骤如下:

  • 计算所有的核心对象和核心距离
    • 因为 eps 为无穷大,则显然每个样本点都是核心对象
    • 因为 min_samples=2,则每个核心对象的核心距离就是离自己最近样本点到自己的距离(样本点自身也是邻域元素之一)
    • 索引0123456
      元素(1, 2)(2, 5)(8, 7)(3, 6)(8, 8)(7, 3)(4, 5)
      核心距离3.161.411.01.411.03.611.41
  • 随机在 D 中选择一个核心对象
    • 假设选择 0 号元素,将 0 号元素放入 R 中,并从 D 中删除
    • 因为 eps = inf,则其他所有样本点都是 0 号元素的密度直达对象
    • 计算其他所有元素到 0 号元素的可达距离(计算所有元素到 0 号元素的欧氏距离)
    • 按可达距离排序,添加到序列 O 中
    • 此时D{1,2,3,4,5,6},R{0},O{1,6,3,5,2,4}
    • 索引0123456核心对象
      元素(1, 2)(2, 5)(8, 7)(3, 6)(8, 8)(7, 3)(4, 5)
      核心距离3.161.411.01.411.03.611.41
      第一次可达距离--3.168.604.479.216.084.240
  • 此时 O 中可达距离最小的元素是 1 号元素
    • 取出 1 号元素放入 R ,并从 D 和 O 中删除
    • 因为 1 号元素是核心对象,找到 1 号元素在 D 中的所有密度直达对象(剩余的所有样本点),并计算可达距离
    • 同时更新 O
    • 此时 D{2,3,4,5,6} R{0,1} O{3,6,5,2,4}
    • 索引0123456核心对象
      元素(1, 2)(2, 5)(8, 7)(3, 6)(8, 8)(7, 3)(4, 5)
      核心距离3.161.411.01.411.03.611.41
      第二次可达距离----6.321.416.705.382.01
  • 此时 O 中可达距离最小的元素是 3 号元素
    • 取出 3 号元素放入 R ,并从 D 和 O 中删除
    • 因为 3 号元素是核心对象,找到 3 号元素在 D 中的所有密度直达对象(剩余的所有样本点),并计算可达距离
    • 同时更新 O
    • 此时D{2,4,5,6} R{0,1,3} O{6,5,2,4}
    • 索引0123456核心对象
      元素(1, 2)(2, 5)(8, 7)(3, 6)(8, 8)(7, 3)(4, 5)
      核心距离3.161.411.01.411.03.611.41
      第三次可达距离----5.09--5.395.01.413
  • 此时 O 中可达距离最小的元素是 6 号元素
    • 取出 6 号元素放入 R ,并从 D 和 O 中删除
    • 因为 6 号元素是核心对象,找到 6 号元素在 D 中的所有密度直达对象(剩余的所有样本点),并计算可达距离,同时更新 O
    • 此时D{2,4,5},R{0,1,3,6},O(5,2,4}
    • 索引0123456核心对象
      元素(1, 2)(2, 5)(8, 7)(3, 6)(8, 8)(7, 3)(4, 5)
      核心距离3.161.411.01.411.03.611.41
      第四次可达距离----4.47--5.03.61--6
  • 此时 O 中可达距离最小的元素是 5 号元素
    • 取出 5 号元素放入 R ,并从 D 和 O 中删除
    • 因为 5 号元素是核心对象,找到 5 号元素在 D 中的所有密度直达对象(剩余的所有样本点),并计算可达距离,同时更新 O。
    • 注意本次计算的4号元素到5号元素的可达距离是5.10,大于5.0,因此不更新4号元素的可达距离
    • 此时D{2,4}R{0,1,3,6,5} O(2,4)
    • 索引0123456核心对象
      元素(1, 2)(2, 5)(8, 7)(3, 6)(8, 8)(7, 3)(4, 5)
      核心距离3.161.411.01.411.03.611.41
      第五次可达距离----4.12--

      5.0

      (5.10)

      ----5
  • 此时 O 中可达距离最小的元素是 2 号元素
    • 取出 2 号元素放入 R ,并从 D 和 O 中删除
    • 因为 2 号元素是核心对象,找到 2 号元素在 D 中的所有密度直达对象,并计算可达距离,同时更新 O
    • 索引0123456核心对象
      元素(1, 2)(2, 5)(8, 7)(3, 6)(8, 8)(7, 3)(4, 5)
      核心距离3.161.411.01.411.03.611.41
      第六次可达距离--------1.0----2

所以最后的R:(0,1,3,6,5,2,4) ,对应的可达距离为:{∞,3.16,1.41,1.41,3.61,4.12,1.0}

按照最终的输出顺序绘制可达距离图

  • 可以发现,可达距离呈现两个波谷,也即表现为两个簇,波谷越深,表示簇越紧密
  • 只需要在两个波谷之间取一个合适的 eps 分隔值(图中蓝色的直线),使用 DBSCAN 算法就会聚类为两个簇。
  • 即第一个簇的元素为:0、1、3、6、5;第二个簇的元素为:2、4。

1.4 和DBSCAN的异同

  • OPTICS算法与DBSCAN算法有许多相似之处,可以被视为DBSCAN的一种泛化,它将eps要求从单一值放宽到值范围
  • DBSCAN和OPTICS之间的关键区别在于,OPTICS算法构建了一个可达性图,为每个样本分配了一个可达性距离和在集群排序属性中的位置
    • 这两个属性在模型拟合时被赋值,并用于确定集群成员资格

1.5 可达性距离

  • OPTICS生成的可达性距离允许在单个数据集中提取可变密度的集群
    • 结合可达性距离和数据集排序产生了一个可达性图,其中点密度在Y轴上表示,点的排序使得附近的点相邻
    • 平行于x轴“切割”可达性图产生了类似DBSCAN的结果:
      • 所有在“切割”线以上的点被分类为噪声
      • 每当从左到右阅读时出现间断时,就标志着一个新的集群
  • OPTICS的默认集群提取方法是查看图中的陡峭斜坡以找到集群,可以使用xi参数定义什么算作陡峭斜坡

1.6 计算复杂度

  • 空间索引树用于避免计算完整的距离矩阵,并允许在大量样本集上有效地使用内存
  • 对于大型数据集,可以通过HDBSCAN获得类似(但不完全相同)的结果。
    • HDBSCAN实现是多线程的,并且比OPTICS具有更好的算法运行时间复杂性,但以较差的内存扩展为代价

2 sklearn.cluster.OPTICS

class sklearn.cluster.OPTICS(*, min_samples=5, max_eps=inf, metric='minkowski', p=2, metric_params=None, cluster_method='xi', eps=None, xi=0.05, predecessor_correction=True, min_cluster_size=None, algorithm='auto', leaf_size=30, memory=None, n_jobs=None)

2.1 主要参数

min_samples

int > 1 或介于0和1之间的浮点数,默认为5

点被视为核心点时,邻域中的样本数量

如果是浮点数,表示样本数量的一部分

max_eps

两个样本被视为彼此邻域的最大距离。

np.inf的默认值将识别所有规模的聚类;

降低max_eps将导致更短的运行时间

metric

str或可调用,默认为'minkowski'

用于距离计算的度量。可以使用

来自scikit-learn:['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan']

来自scipy.spatial.distance:['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule']

p闵可夫斯基度量的参数
xi

float在0和1之间,默认为0.05

确定可达性图中构成聚类边界的最小陡度。

例如,可达性图中的向上点被定义为一个点与其后继的比率最多为1-xi。

仅在cluster_method='xi'时使用

min_cluster_size

int > 1 或介于0和1之间的浮点数,默认为None

OPTICS聚类中的最小样本数量,表示为绝对数量或样本数量的一部分(至少为2)。如果为None,则使用min_samples的值。

仅在cluster_method='xi'时使用。

algorithm

{'auto', 'ball_tree', 'kd_tree', 'brute'},默认为'auto' 用于计算最近邻居的算法:

'ball_tree'将使用BallTree。

'kd_tree'将使用KDTree。

'brute'将使用蛮力搜索。

'auto'(默认)将尝试根据传递给fit方法的值决定最合适的算法。

leaf_size传递给BallTree或KDTree的叶子大小。这会影响构建和查询的速度,以及存储树所需的内存。最佳值取决于问题的性质。
cluster_method

str,默认为'xi'

使用计算的可达性和排序提取聚类的方法。可能的值是“xi”和“dbscan”

2.2. 举例

from sklearn.cluster import OPTICS
import numpy as npX = np.array([[1, 2], [1, 4], [1, 0],[10, 2], [10, 4], [10, 0]])op=OPTICS(min_samples=2).fit(X)op.labels_
#array([0, 0, 0, 1, 1, 1])op.ordering_
#array([0, 1, 2, 3, 4, 5])
#按聚类顺序排列的样本索引列表op.reachability_
#array([inf,  2.,  2.,  9.,  2.,  2.])
#按对象顺序索引的每个样本的可达距离op.core_distances_
#array([inf,  2.,  2.,  9.,  2.,  2.])
#每个样本成为核心点的核心距离
#永远不会成为核心的点的距离为无穷大。

参考内容:机器学习笔记(十一)聚类算法OPTICS原理和实践_optics聚类_大白兔黑又黑的博客-CSDN博客

(4)聚类算法之OPTICS算法 - 知乎 (zhihu.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/214631.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Hologres性能优化指南1:行存,列存,行列共存

在Hologres中支持行存、列存和行列共存三种存储格式&#xff0c;不同的存储格式适用于不同的场景。 在建表时通过设置orientation属性指定表的存储格式&#xff1a; BEGIN; CREATE TABLE <table_name> (...); call set_table_property(<table_name>, orientation,…

什么是工业物联网(IOT)?这样的IOT平台你需要吗?——青创智通

物联网(IOT)是指在互联网上为传输和共享数据而嵌入传感器和软件的互联设备的广泛性网络。这允许将从物理对象收集的信息(数据)存储在专用服务器或云中。通过分析这些积累的信息&#xff0c;通过提供最优的设备控制和方法&#xff0c;可以实现一个更安全、更方便的社会。在智能家…

2023.11.23 云服务器实现 Spring Boot 项目文件上传并访问

环境介绍 云服务器&#xff1a;京东云云服务器系统&#xff1a; CentOS 7.9JDK 版本&#xff1a;1.8Spring Boot 版本&#xff1a;2.7.17 具体步骤 步骤一 首先我们得先创建一个 Spring Boot 项目 创建如下目录结构 关于如何创建一个 Spring Boot 项目 请点击下方链接详细了解 …

ARKit增加一个盒子

ARKit增加一个盒子 体验一下ARKit的能力&#xff0c;在室内随便加点小球&#xff0c;然后在AR中显示出来。 效果如下图&#xff1a; 以下为操作流程。 新建项目 新建一个空项目&#xff0c;项目一定要选择 Augmented Reality App&#xff0c;能够省很多的事。 之后的 conte…

想问问各位大佬,网络安全这个专业普通人学习会有前景吗?

网络安全是一个非常广泛的领域&#xff0c;涉及到许多不同的岗位。这些岗位包括安全服务、安全运维、渗透测试、web安全、安全开发和安全售前等。每个岗位都有自己的要求和特点&#xff0c;您可以根据自己的兴趣和能力来选择最适合您的岗位。 渗透测试/Web安全工程师主要负责模…

SIP协议在语音通信的应用方式

在企业语音通信的过程中&#xff0c;SIP协议支持的网络通信技术通过网络为用户提供了无数的通信便利&#xff0c;已成为企业不可或缺的重要通信技术。由于SIP协议是语音通信帮助企业实现这些优势的原因&#xff0c;因此了解支持这些呼叫的SIP协议的上下文至关重要。 什么是SIP?…

累计定点160+车型,商汤绝影凭什么领跑规模化量产?

2023广州车展火热进行&#xff0c;智能化技术加速“内卷”。 商汤绝影多款合作量产车型亮相2023广州车展&#xff0c;包括昊铂 GT、传祺ES9、E8系列和本田雅阁、捷途旅行者、极氪X等&#xff0c;全方位呈现在智能驾驶和智能座舱领域的最新成果&#xff0c;以AI“新科技”&…

【快速解决】使用IDEA快速搭建SpringBoot项目(超详细)

前言 Spring Boot是Spring Framework的一款脚手架式框架&#xff0c;可以帮助开发者快速构建基于Spring的企业级应用程序。本篇博客将介绍如何使用IntelliJ IDEA&#xff08;以下简称IDEA&#xff09;来快速搭建一个Spring Boot项目。 目录 ​编辑 前言 使用IDEA快速搭建Spri…

社区物联网云服务架构设计

文章目录 1 摘要2 架构图2.1 社区物联网云服务网络拓扑图2.2 社区物联网云服务通讯流程图2.3 社区远程开锁功能流程图 3 应用场景 1 摘要 随着社区管理越来越智能化&#xff0c;社区物联网升级与改造的市场空间也越来越大。社区物联网包含楼宇对讲、门禁门锁、通道闸等等设备系…

如何一键消除图片里的水印?图片去水印教程一看就会!

如何一键消除图片水印&#xff1f;在现今的数字时代&#xff0c;我们常常会遇到带有水印的图片&#xff0c;而传统的方法往往费时且复杂&#xff0c;让我们感到困扰。那么如何一键消除图片水印呢&#xff1f;今天&#xff0c;我们为您推荐一款非常实用的去水印软件&#xff0c;…

Elasticsearch知识

目录 Elasticsearch逻辑设计和物理设计 逻辑设计物理设计Elasticsearch原理 倒排索引文档的分析过程保存文档搜索文档写数据的底层原理 数据刷新&#xff08;fresh&#xff09;事务日志的写入ES在大数据量下的性能优化 文件系统缓存优化数据预热文档&#xff08;Document&…

【EI会议征稿】第三届电子信息技术国际学术会议(EIT 2024)

The 3rd International Conference on Electronic Information Technology 第三届电子信息技术国际学术会议&#xff08;EIT 2024&#xff09; 电子信息工程在我国信息化产业的发展过程中举足轻重&#xff0c;且随着现代社会的发展&#xff0c;航空航天领域、制造业领域和智能…