竞赛选题 题目:基于FP-Growth的新闻挖掘算法系统的设计与实现

文章目录

  • 0 前言
  • 1 项目背景
  • 2 算法架构
  • 3 FP-Growth算法原理
    • 3.1 FP树
    • 3.2 算法过程
    • 3.3 算法实现
      • 3.3.1 构建FP树
    • 3.4 从FP树中挖掘频繁项集
  • 4 系统设计展示
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于FP-Growth的新闻挖掘算法系统的设计与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 项目背景

如今新闻泛滥,令人眼花缭乱,即使同一话题下的新闻也多得数不胜数。人们可以根据自己的职业和爱好关注专业新闻网站的不同热点要闻。因此,通过对人们关注新闻的热点问题进行分析,可以得出民众对某个领域的关切程度和社会需要解决的问题,也有利于了解当前的舆论焦点,有助于政府了解民意,便于国家对舆论进行正确引导,使我们的社会更加安定和谐。本文以财经领域为例,通过爬虫技术抓取网络上的大量财经新闻,通过对新闻内容文本进行预处理及密度聚类分析来发现热点;从发现的热点中,再进行词汇聚类分析,得出热点所涉及的人或事物,以此分析出社会对经济领域关注的问题和需要解决的问题。

在这里插入图片描述

2 算法架构

该项目学长要通过文本挖掘技术进行新闻热点问题分析,把从网上抓取到的财经新闻,通过对新闻内容的聚类,得到新闻热点;再对热点进行分析,通过对某一热点相关词汇的聚类,得到热点问题所涉及的人物、行业或组织等。

在这里插入图片描述
1、利用新闻 API、爬虫算法、多线程并行技术,抓取三大专业财经新闻网站(新浪财经、搜狐财经、新华网财经)的大量财经新闻报道;

2、对新闻进行去重、时间段过滤,然后对新闻内容文本进行 jieba
分词并词性标注,过滤出名词、动词、简称等词性,分词前使用自定义的用户词词典增加分词的准确性,分词后使用停用词词典、消歧词典、保留单字词典过滤掉对话题无关并且影响聚类准确性的词,建立每篇新闻的词库,利用
TF-IDF 特征提取之后对新闻进行 DBSCAN 聚类,并对每个类的大小进行排序;

3、针对聚类后的每一类新闻,为了得到该处热点的话题信息,还需要提取它们的标题,利用 TextRank
算法,对标题的重要程度进行排序,用重要性最高的标题来描述该处热点的话题

4、对所有的新闻内容进行 jieba 分词,并训练出 word2vec 词嵌入模型,然后对聚类后的每一类新闻,提取它们的内容分词后的结果,运用
word2vec 模型得到每个词的词向量,再利用 FP-Growth类算法进行相关新闻挖掘。

3 FP-Growth算法原理

3.1 FP树

FP树是一种存储数据的树结构,如下图所示,每一路分支表示数据集的一个项集,数字表示该元素在某分支中出现的次数

在这里插入图片描述

3.2 算法过程

1 构建FP树

  • 遍历数据集获得每个元素项的出现次数,去掉不满足最小支持度的元素项
  • 构建FP树:读入每个项集并将其添加到一条已存在的路径中,若该路径不存在,则创建一条新路径(每条路径是一个无序集合)

2 从FP树中挖掘频繁项集

  • 从FP树中获得条件模式基
  • 利用条件模式基构建相应元素的条件FP树,迭代直到树包含一个元素项为止

算法过程写得比较简略,具体过程我们在下节的实操中进一步理解。

3.3 算法实现

3.3.1 构建FP树

class treeNode:def __init__(self,nameValue,numOccur,parentNode):self.name=nameValue #节点名self.count=numOccur #节点元素出现次数self.nodeLink=None #存放节点链表中,与该节点相连的下一个元素self.parent=parentNodeself.children={} #用于存放节点的子节点,value为子节点名def inc(self,numOccur):self.count+=numOccurdef disp(self,ind=1):print("   "*ind,self.name,self.count) #输出一行节点名和节点元素数,缩进表示该行节点所处树的深度for child in self.children.values():child.disp(ind+1) #对于子节点,深度+1# 构造FP树# dataSet为字典类型,表示探索频繁项集的数据集,keys为各项集,values为各项集在数据集中出现的次数# minSup为最小支持度,构造FP树的第一步是计算数据集各元素的支持度,选择满足最小支持度的元素进入下一步def createTree(dataSet,minSup=1):headerTable={}#遍历各项集,统计数据集中各元素的出现次数for key in dataSet.keys():for item in key:headerTable[item]=headerTable.get(item,0)+dataSet[key] #遍历各元素,删除不满足最小支持度的元素for key in list(headerTable.keys()):if headerTable[key]<minSup:del headerTable[key]freqItemSet=set(headerTable.keys())#若没有元素满足最小支持度要求,返回None,结束函数if len(freqItemSet)==0:return None,Nonefor key in headerTable.keys():headerTable[key]=[headerTable[key],None] #[元素出现次数,**指向每种项集第一个元素项的指针**]retTree=treeNode("Null Set",1,None) #初始化FP树的顶端节点for tranSet,count in dataSet.items():localD={} #存放每次循环中的频繁元素及其出现次数,便于利用全局出现次数对各项集元素进行项集内排序for item in tranSet:if item in freqItemSet:localD[item]=headerTable[item][0]if len(localD)>0:orderedItems=[v[0] for v in sorted(localD.items(),key=operator.itemgetter(1),reverse=True)] #根据元素全局出现次数对每个项集(tranSet)中的元素进行排序updateTree(orderedItems,retTree,headerTable,count) #使用排序后的项集对树进行填充return retTree,headerTable#树的更新函数#items为按出现次数排序后的项集,是待更新到树中的项集;count为items项集在数据集中的出现次数#inTree为待被更新的树;headTable为头指针表,存放满足最小支持度要求的所有元素def updateTree(items,inTree,headerTable,count):#若项集items当前最频繁的元素在已有树的子节点中,则直接增加树子节点的计数值,增加值为items[0]的出现次数if items[0] in inTree.children: inTree.children[items[0]].inc(count)else:#若项集items当前最频繁的元素不在已有树的子节点中(即,树分支不存在),则通过treeNode类新增一个子节点inTree.children[items[0]]=treeNode(items[0],count,inTree)#若新增节点后表头表中没有此元素,则将该新增节点作为表头元素加入表头表if headerTable[items[0]][1]==None: headerTable[items[0]][1]=inTree.children[items[0]]else:#若新增节点后表头表中有此元素,则更新该元素的链表,即,在该元素链表末尾增加该元素updateHeader(headerTable[items[0]][1],inTree.children[items[0]])#对于项集items元素个数多于1的情况,对剩下的元素迭代updateTreeif len(items)>1:updateTree(items[1::],inTree.children[items[0]],headerTable,count)#元素链表更新函数#nodeToTest为待被更新的元素链表的头部#targetNode为待加入到元素链表的元素节点def updateHeader(nodeToTest,targetNode):#若待被更新的元素链表当前元素的下一个元素不为空,则一直迭代寻找该元素链表的末位元素while nodeToTest.nodeLink!=None: nodeToTest=nodeToTest.nodeLink #类似撸绳子,从首位一个一个逐渐撸到末位#找到该元素链表的末尾元素后,在此元素后追加targetNode为该元素链表的新末尾元素nodeToTest.nodeLink=targetNode

测试

#加载简单数据集
def loadSimpDat():simpDat = [['r', 'z', 'h', 'j', 'p'],['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],['z'],['r', 'x', 'n', 'o', 's'],['y', 'r', 'x', 'z', 'q', 't', 'p'],['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]return simpDat#将列表格式的数据集转化为字典格式
def createInitSet(dataSet):retDict={}for trans in dataSet:retDict[frozenset(trans)]=1return retDictsimpDat=loadSimpDat()
dataSet=createInitSet(simpDat)
myFPtree1,myHeaderTab1=createTree(dataSet,minSup=3)
myFPtree1.disp(),myHeaderTab1

输入数据:

在这里插入图片描述
由此数据集构建的FP树长这样,看看是不是满足上一节介绍的FP树结构

在这里插入图片描述

3.4 从FP树中挖掘频繁项集

具体过程如下:

1 从FP树中获得条件模式基

  • 条件模式基:以所查找元素项为结尾的路径集合,每条路径都是一条前缀路径,路径集合包括前缀路径和路径计数值。
  • 例如,元素"r"的条件模式基为 {x,s}2,{z,x,y}1,{z}1
  • 前缀路径:介于所查找元素和树根节点之间的所有内容
  • 路径计数值:等于该条前缀路径的起始元素项(即所查找的元素)的计数值

2 利用条件模式基构建相应元素的条件FP树

  • 对每个频繁项,都要创建一棵条件FP树。
  • 例如对元素t创建条件FP树:使用获得的t元素的条件模式基作为输入,利用构建FP树相同的逻辑构建元素t的条件FP树

3 迭代步骤(1)(2),直到树包含一个元素项为止

  • 接下来继续构建{t,x}{t,y}{t,z}对应的条件FP树(tx,ty,tz为t条件FP树的频繁项集),直到条件FP树中没有元素为止

  • 至此可以得到与元素t相关的频繁项集,包括2元素项集、3元素项集。。。

    #由叶节点回溯该叶节点所在的整条路径
    #leafNode为叶节点,treeNode格式;prefixPath为该叶节点的前缀路径集合,列表格式,在调用该函数前注意prefixPath的已有内容
    def ascendTree(leafNode,prefixPath):if leafNode.parent!=None:prefixPath.append(leafNode.name)ascendTree(leafNode.parent,prefixPath)#获得指定元素的条件模式基
    #basePat为指定元素;treeNode为指定元素链表的第一个元素节点,如指定"r"元素,则treeNode为r元素链表的第一个r节点
    def findPrefixPath(basePat,treeNode):condPats={} #存放指定元素的条件模式基while treeNode!=None: #当元素链表指向的节点不为空时(即,尚未遍历完指定元素的链表时)prefixPath=[]ascendTree(treeNode,prefixPath) #回溯该元素当前节点的前缀路径if len(prefixPath)>1:condPats[frozenset(prefixPath[1:])]=treeNode.count #构造该元素当前节点的条件模式基treeNode=treeNode.nodeLink #指向该元素链表的下一个元素return condPats#有FP树挖掘频繁项集
    #inTree: 构建好的整个数据集的FP树
    #headerTable: FP树的头指针表
    #minSup: 最小支持度,用于构建条件FP树
    #preFix: 新增频繁项集的缓存表,set([])格式
    #freqItemList: 频繁项集集合,list格式def mineTree(inTree,headerTable,minSup,preFix,freqItemList):#按头指针表中元素出现次数升序排序,即,从头指针表底端开始寻找频繁项集bigL=[v[0] for v in sorted(headerTable.items(),key=lambda p:p[1][0])] for basePat in bigL:#将当前深度的频繁项追加到已有频繁项集中,然后将此频繁项集追加到频繁项集列表中newFreqSet=preFix.copy()newFreqSet.add(basePat)print("freqItemList add newFreqSet",newFreqSet)freqItemList.append(newFreqSet)#获取当前频繁项的条件模式基condPatBases=findPrefixPath(basePat,headerTable[basePat][1])#利用当前频繁项的条件模式基构建条件FP树myCondTree,myHead=createTree(condPatBases,minSup)#迭代,直到当前频繁项的条件FP树为空if myHead!=None:mineTree(myCondTree,myHead,minSup,newFreqSet,freqItemList)
    

接着刚才构建的FP树,测试一下,

freqItems=[]
mineTree(myFPtree1,myHeaderTab1,3,set([]),freqItems)
freqItems

我们从FP树中挖掘到的频繁项集如下,这里设置的最小支持度为3:

在这里插入图片描述
上图表示数据集中,支持度大于3(出现3次以上)的元素项集,即,频繁项集。

4 系统设计展示

为了方便操作及理解,学长使用 Python 的 tkinter 模块设计了一个系统操作界面

在这里插入图片描述

分析可视化

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(未完待续。。。。)

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/214786.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Redis】前言--介绍redis的全局系统观

一.前言 学习是要形成自己的网状知识以及知识架构图&#xff0c;要不最终都还是碎片化的知识&#xff0c;不能达到提升的目的&#xff0c;只有掌握了全貌的知识才是全解&#xff0c;要不只是一知半解。这章会介绍redis的系统架构图&#xff0c;帮助认识redis的设计是什么样的&a…

虚拟机VMware下CentOS7.9对磁盘扩容

首先是在VMware虚拟下对机器进行关机&#xff0c;然后扩容后启动机器&#xff08;操作简单&#xff0c;忽略&#xff0c;网上很多&#xff09; 开始增加磁盘空间 查看磁盘空间 发现此时磁盘空间仍然没变化 df -lh 查看当前磁盘分区信息 fdisk -l 对新加磁盘空间进行分区操…

js实现图片懒加载

方式一&#xff1a;html实现 在img标签加上 loading"lazy" 方式二&#xff1a;js实现 通过js监听页面的滚动&#xff0c;实现的原理主要是判断当前图片是否到了可视区域&#xff1a; 拿到所有的图片 dom 。遍历每个图片判断当前图片是否到了可视区范围内。如果到了…

C/C++ 实现Socket交互式服务端

在 Windows 操作系统中&#xff0c;原生提供了强大的网络编程支持&#xff0c;允许开发者使用 Socket API 进行网络通信&#xff0c;通过 Socket API&#xff0c;开发者可以创建、连接、发送和接收数据&#xff0c;实现网络通信。本文将深入探讨如何通过调用原生网络 API 实现同…

预制菜产业发展背景下,如何利用视频监控保障行业监管工作

一、方案背景 随着社会的快速发展和人们生活水平的提高&#xff0c;预制菜产业作为现代餐饮行业的重要组成部分&#xff0c;越来越受到消费者的欢迎。然而&#xff0c;由于相关监管工作的不健全或不到位&#xff0c;一些问题也相继浮现出来&#xff0c;如&#xff1a;食品安全…

浅谈国内智能制造现状和未来发展趋势

进人二十一世纪&#xff0c;互联网、新能源、大数据等技术的迅猛发展&#xff0c;从而使得社会发生巨大的改变&#xff0c;人类生产工业发生变革。为应对全球挑战&#xff0c;我国根据发展的实际情况&#xff0c;提出《中国制造2025》的国家战略规划。毋庸置疑的是&#xff0c;…

uniapp IOS从打包到上架流程(详细简单) 原创

​ 1.登入苹果开发者网站&#xff0c;打开App Store Connect ​ 2.新App的创建 点击我的App可以进入App管理界面&#xff0c;在右上角点击➕新建App 即可创建新的App&#xff0c;如下图&#xff1a; ​ 3.app基本信息填写 新建完App后&#xff0c;需要填写App的基本信息&…

【回眸】Tessy单元测试软件使用指南(一)安装篇

安装 在官网上下载安装包&#xff0c;安装完成后打开进入这个界面 注册申请license&#xff1a;在作为服务端的电脑上安装Tessy。安装完成后&#xff0c;启动Tessy会自动生成license服务器的注册码。&#xff08;注册码用于申请试用或永久的license文件&#xff09;这个对于我…

PCL 计算两点云之间的最小距离

目录 一、 算法原理二、 代码实现三、 结果展示四、 相关链接本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、 算法原理 pcl::registration::CorrespondenceEstimation是确定目标和查询点集(或特征)之间对应关…

App Inventor 2 什么情况下需要使用字典?

介绍 字典在其他语言中称为映射、关联数组或列表&#xff0c;是一种将一个值&#xff08;通常称为键&#xff09;与另一个值关联的数据结构。 Q&#xff1a;App Inventor 2 什么情况下需要使用字典&#xff1f; A&#xff1a;列表能完成字典的绝大部分功能&#xff0c;不过字…

Linux:VMWare启动虚拟机导致电脑蓝屏并重启问题解决

情况描述&#xff1a; 我这边安装Ubuntu系统后&#xff0c;对Ubuntu进行了汉化操作&#xff0c;重启Ubuntu时&#xff0c;直接导致Windows10蓝屏重启。 解决办法&#xff1a; 1、打开任务管理器&#xff0c;检查Windows10系统是否开启虚拟化功能。 没有开启&#xff0c;就进入…

每日一题:LeetCode-102.二叉树的层序遍历

每日一题系列&#xff08;day 03&#xff09; 前言&#xff1a; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f50e…