【腾讯云云上实验室】向量数据库与数据挖掘分析的黄金组合指南

前言:

在当今信息化时代,掌握对数据进行挖掘和分析的能力变得愈发关键。根据需求精准处理数据不仅仅是一项技能,更是对未来决策和操作的至关重要的支持。除了熟练运用适当的算法模型对大数据进行挖掘和分析外,合理高效存储和处理大量数据,对开发者和企业来说变得越来越重要。

在这里插入图片描述

文章目录

  • 一、走近腾讯云向量数据库
  • 二、助力数据收集和处理
  • 三、数据挖掘和分析使用指南
    • 1. 准备工作
    • 2. 数据操作演示(平台端)
    • 3. 数据操作演示(SDK接入)
    • 4. 以汽车相关数据进行分析预测
  • 四、大数据时代下的数据挖掘的未来趋势
  • 五、总结

前几天,和往常一样下班后回家打开电脑学一会,偶然机会看到了腾讯云刚发布的向量数据库体验活动,刚好最近手头的工作也忙完了,于是下意识也报名申请了一个体验名额。在体验使用的时候,也融入了一些对数据进行分析和挖掘的算法。
在这里插入图片描述

整体使用感觉也非常棒,经过这几天的整理和总结,能够帮助不了解或者没使用过的小伙伴快速熟悉并且有一定的上手。(腾讯云向量数据库:感兴趣的小伙伴可以去申请名额体验)

一、走近腾讯云向量数据库

看到向量数据库你可能会想到数据库,但是它和传统数据库相比有鲜明的优点。可能有不少朋友在平常工作或者生活中,或多或少都接触过一些关于向量数据库的消息,作为一个全能的程序员,除了关注底层的逻辑外,清晰明了向量数据库发展的方向和未来趋势,能否抓住这个在发展风口机会。我们还需要去了解,让我来以腾讯云向量数据库为例给你讲讲吧。

在这里插入图片描述
随着AI技术的快速发展,越来越多的公司和企业开始重视底层数据的合作探索。在将大型模型应用于实际场景中,数据处理和挖掘变得至关重要。向量数据库作为支撑大型模型的关键基础设施,将在个人、企业和社交媒体等领域发挥越来越重要的作用。

总的来说:向量数据库的优势在于高效的向量相似性搜索、高维数据处理、特定索引结构、异构数据类型支持,适用于机器学习和深度学习、大规模数据处理,提供实时性能。选择使用向量数据库应基于应用需求和性能评估。

二、助力数据收集和处理

每天,每个人都面临来自各个渠道的数千条信息。而对于开发者和企业用户而言,每天需要处理的信息量更是以万计甚至千亿计。信息的接收和处理成为一个极具挑战性的任务。。
在这里插入图片描述
往往让开发者和企业在处理数据方面头疼的问题不外乎:

1. 如何适应业务数据快速变化的需求?

2. 如何保障数据安全?

3. 如何实现业务系统对高实时响应的要求?

4. 如何在多样化的销售和服务场景中?

腾讯云向量数据库由于其卓越的稳定性、性能、易用性和便捷的运维,都展现出了显著优势,能够提供高效稳定的服务。

  1. 高性能: 向量数据库单索引支持10亿级向量数据规模,可支持百万级 QPS 及毫秒级查询延迟。
  2. 高可用: 向量数据库提供多副本高可用特性,其多可用区和三节点的架构可用性可达99.99%,显著提高系统的
  3. 可靠性和容错性:确保数据库在面临节点故障和负载变化等挑战时仍能正常运行。
  4. 大规模: 向量数据库架构支持水平扩展,单实例可支持百万级 QPS,轻松满足 AI 场景下的向量存储与检索需求。
  5. 低成本: 只需在管理控制台按照指引,简单操作几个步骤,即可快速创建向量数据库实例,全流程平台托管,无需进行任何安装、部署和运维操作,有效减少机器成本、运维成本和人力成本开销。
  6. 简单易用: 支持丰富的向量检索能力,用户通过 HTTP API 接口即可快速操作数据库,开发效率高。同时控制台提供了完善的数据管理和监控能力,操作简单便捷。
  7. 稳定可靠: 向量数据库源自腾讯集团自研的向量检索引擎 OLAMA,近40个业务线上稳定运行,日均处理的搜索请求高达千亿次,服务连续性、稳定性有保障。

三、数据挖掘和分析使用指南

在这里插入图片描述

1. 准备工作

  1. 首先我们需要去申请一台向量数据库 腾讯云向量数据库申请 ,登录进入后,点击新建。如图,是已经构建好的向量数据库
    在这里插入图片描述
  2. 配置向量数据库实例相关信息
  3. 创建好向量数据库后,可以查看相关的配置信息,包括内网外网访问地址,以及密钥信息在这里插入图片描述
  4. 创建好向量数据库后,点击登录,来到向量数据库登录界面,如图需要账号和密码账号默认是root,密码是向量数据库配置中的密钥在这里插入图片描述
  5. 登录进去后,可以看到先向量数据库管理模块和数据操作模块。管理模块可以创建向量数据库,管理集合。数据操作模块可以进行精确、相似度查询、插入/替换、更新、删除数据。

在这里插入图片描述

2. 数据操作演示(平台端)

腾讯云向量数据库支持多种方式操作向量数据库,包括:使用平台数据操作模块操作,或者接入Python,Java以及HttpAPI来进行操作,在这里我演示一下平台数据操作和接入Python的SDK使用。

1.插入/更新 参数数据 支持以json格式插入数据

在这里插入图片描述
2.精确查询 参数支持以 表单和JSON两种格式根据不同情况(包括:主键和条件进行查询)

在这里插入图片描述
3.相似度查询 可以根据不同格式进行检索,同时也支持条件查询和主键查询,这一步会检索出结果有相似程度的数据

在这里插入图片描述
4.删除数据 可以根据条件查询删除,同时也可以根据主键去删除

在这里插入图片描述

3. 数据操作演示(SDK接入)

1.官方提供了多种接入方式,在这里我以Python为例子,进行接入 腾讯云向量数据库API文档

在这里插入图片描述
2.以Python为例,本地连接远程向量数据库
首先需要导入依赖:

pip install tcvectordb

然后连接远程向量数据库,这一块url 输入你的向量数据库外网地址,apikey输入你的向量数据库密钥

import tcvectordb
from tcvectordb.model.enum import FieldType, IndexType, MetricType, ReadConsistency#这一块url 输入你的向量数据库外网地址,apikey输入你的向量数据库密钥
client = tcvectordb.VectorDBClient(url='http://10.0.X.X', username='root', key='eC4bLRy2va******************************', read_consistency=ReadConsistency.EVENTUAL_CONSISTENCY, timeout=30)
# 连接到数据库
db = client.database('test')# 获取或创建集合
coll = db.collection("test_1")

3.连接好后,就可以对向量数据库中数据进行相关操作,通过查看文档API,可以实现刚才第二步骤上的平台数据操作流程,下面举几个例子

文档4. 如下图所示,可以根据文档进行代码编写,实现数据库和数据库中集合的相关操作

在这里插入图片描述

4. 以汽车相关数据进行分析预测

目的:通过数据分析根据二手汽车行驶的公里来预测汽车的二手价格

1.原数据:总共几万条二手汽车信息数据,处理之后存入向量数据库中,模拟实际情况

在这里插入图片描述
这里是处理一些脏数据,然后存入向量数据库中

def hadnle(data):data = data[data.Km != '百公里内']data = data[data.Boarding_time != '未上牌']data = data[data.New_price != '暂无']data = data[['Km', 'Sec_price', 'Boarding_time', 'New_price']]data['New_price'] = data['New_price'].apply(lambda x: float(x.strip('万')))def km_to_float(x):return float(x.strip('万公里'))data['Km'] = data['Km'].apply(km_to_float)data['Boarding_time'] = (pd.to_datetime(data['Boarding_time'], format='%Y年%m月') - pd.to_datetime('2000-01-01')).dt.days / 30data['Sec_price'] = data['Sec_price'].apply(lambda x: float(x))return data

2.通过将部分汽车数据存储在向量数据库的集合中

在这里插入图片描述

3.可以通过学习官方API提取出想要的数据:

在这里插入图片描述
举例:根据需求从对应向量数据库的集合中提取中想要的数据

import tcvectordb
from tcvectordb.model.enum import FieldType, IndexType, MetricType, ReadConsistency
from tcvectordb.model.index import Index, VectorIndex, FilterIndex, HNSWParams
from tcvectordb.model.document import Document, Filter, SearchParams#create a database client object
client = tcvectordb.VectorDBClient(url='http://10.0.X.X', username='root', key='eC4bLRy2va******************************', read_consistency=ReadConsistency.EVENTUAL_CONSISTENCY, timeout=30)db = client.database('db-test')
coll = db.collection('book-vector')# Set filter
filter_param=Filter(Filter.In("bookName",["三国演义", "西游记"]))
# query 
doc_list = coll.query(document_ids=['0001','0002','0003'], retrieve_vector=True, filter=filter_param, limit=3, offset=0, output_fields=['bookName','author'])for doc in doc_list:print(doc)

4.通过机器学习方法对需要的数据进行分析:(具体情况根据)
线性回归分析:

data = hadnle(data)# 根据需要选择输入和输出特征
X = data[['Km','Boarding_time','New_price']]
Y = data['Sec_price']# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)# 使用线性回归模型
model = linear_model.LinearRegression()#训练模型
model.fit(X_train, y_train)# 用测试集评估模型性能
y_pred = model.predict(X_test)
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)

分析结果:
在这里插入图片描述

5.决策树回归模型分析:

data = hadnle(data)
# 根据需要选择输入和输出特征
X = data[['Km','Boarding_time','New_price']]
Y = data['Sec_price']# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)# 创建决策树回归模型
model = DecisionTreeRegressor(random_state=42)#训练模型
model.fit(X_train, y_train)# 用测试集评估模型性能
y_pred = model.predict(X_test)
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)

分析结果:
在这里插入图片描述

6.随机森林模型分析:

data = hadnle(data)
# 根据需要选择输入和输出特征
X = data[['Km','Boarding_time','New_price']]
Y = data['Sec_price']# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)#随机森林
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)#训练模型
model.fit(X_train, y_train)# 用测试集评估模型性能
y_pred = model.predict(X_test)
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)

分析结果:
在这里插入图片描述

四、大数据时代下的数据挖掘的未来趋势

通过在向量数据库中存储经过AI模型训练的向量嵌入,能够实现高效的相似度搜索和近邻查询,从而显著提升查询速度。向量数据库不仅支持多模态数据的存储和检索,还能够处理各种不同类型的数据,包括文本、图像和音频等。这对于多模态AI应用,如视觉与语义检索以及多模态生成等,具有重要意义。

随着实时性能的不断提升,向量数据库将更好地满足实时数据检索和分析的需求,对预测分析、信息处理等领域产生深远的影响。我们可以期待数据库未来支持更多数据类型,包括但不限于图像、文本和音频,以更好地适应多模态数据的存储和检索。总体而言,向量数据库将为数据处理领域带来创新,为各行业提供更高效、智能的数据管理服务。

五、总结

通过这个参与活动体验腾讯云向量数据库,整体感觉使用起来非常棒,感兴趣的小伙伴可以通过下方方式了解更多信息,体验和使用向量数据库进行开发。也祝腾讯云向量数据库越来越好。
大数据时代下的数据挖掘的未来趋势

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/215277.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【操作系统】线程的状态

目录 1.前言 2.状态列表 3.代码演示 1.前言 在线程中,有很多的状态。这些状态代表了线程目前所处的位置和情况,我们也可以通过这些状态,在以后的工作中,精准的定位到程序出现的问题。 2.状态列表 在Thread类所创建的对象中&a…

【电子通识】什么是物料清单BOM(Bill of Material))

BOM (Bill of Materials)是我们常说的物料清单。BOM是制造业管理的重点之一,用于记载产品组成所需要的全部物料(Items)。物料需求的计算是从最终产品开始,层层往下推算出部件,组件,零件和原材料的需求量。这…

[工业自动化-25]:IDEC和泉RU2S-24D/RU4S-24D继电器的使用说明和接线方式

目录 一、外观 1.1 继电器整体: 1.2 继电器主体: 1.3 底座: 二、RU系列通用继电器介绍 2.1 总体 2.2 性能规格 2.3 锁存杆 2.4 信号定义与连线 - 2S系列 (1)24V输入 (2)第一路输出 …

C++模拟如何实现vector的方法

任意位置插入,insert的返回值为新插入的第一个元素位置的迭代器;因为插入可能会进行扩容,导致start的值改变,所以先定义一个变量保存pos与start的相对位置;判断是否需要扩容;从插入位置开始,将所…

二次开发问题汇总【C#】

1未将对象引用到实例。 接口函数的参数不对。解决办法【用fixed去限制数组长度】 unsafe public struct VCI_BOARD_INFO {public UInt16 hw_Version;public UInt16 fw_Version;public UInt16 dr_Version;public UInt16 in_Version;public UInt16 irq_Num;public byte can_Num;…

【TypeScript】常见数据结构与算法(二):链表

文章目录 链表结构(LinkedList)链表以及数组的缺点数组链表的优势 什么是链表?封装链表相关方法源码链表常见面试题237-删除链表中的节点206 - 反转链表 数组和链表的复杂度对比 链表结构(LinkedList) 链表以及数组的缺点 链表…

【Java 进阶篇】Jedis 操作 String:Redis中的基础数据类型

在Redis中,String是最基础的数据类型之一,而Jedis作为Java开发者与Redis交互的利器,提供了丰富的API来操作String。本文将深入介绍Jedis如何操作Redis中的String类型数据,通过生动的代码示例和详细的解释,让你轻松掌握…

【Vue】vue指令

目录 V-html v-show和v-if v-show 显示 隐藏 v-if 显示 隐藏 总结 显示隐藏的应用场景 未登录的情况 登录的情况 v- else 和 v-else-if v-if 和v-else v-if 和 v-else-if 总结: v-on 语法一: 语法二: 调用传参 v-bind…

分布式锁详解

文章目录 分布式锁1. [传统锁回顾](https://blog.csdn.net/qq_45525848/article/details/134608044?csdn_share_tail%7B%22type%22:%22blog%22,%22rType%22:%22article%22,%22rId%22:%22134608044%22,%22source%22:%22qq_45525848%22%7D)1.1. 从减库存聊起1.2. 环境准备1.3. 简…

【科普知识】什么是步进电机?

德国百格拉公司于1973年发明了五相混合式步进电机及其驱动器,1993年又推出了性能更加优越的三相混合式步进电机。我国在80年代以前,一直是反应式步进电机占统治地位,混合式步进电机是80年代后期才开始发展。 步进电机是一种用电脉冲信号进行…

【LM358AD运放方波振荡器可控输出幅值】2022-2-25

缘由仿真如何缩小方波振荡电路方波幅值?-有问必答-CSDN问答

『亚马逊云科技产品测评』活动征文|低成本搭建物联网服务器thingsboard

授权声明:本篇文章授权活动官方亚马逊云科技文章转发、改写权,包括不限于在 Developer Centre, 知乎,自媒体平台,第三方开发者媒体等亚马逊云科技官方渠道。 0. 环境 - ubuntu22(注意4G内存勉强够,部署完…