基于食肉植物算法优化概率神经网络PNN的分类预测 - 附代码

基于食肉植物算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于食肉植物算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于食肉植物优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用食肉植物算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于食肉植物优化的PNN网络

食肉植物算法原理请参考:https://blog.csdn.net/u011835903/article/details/125921790

利用食肉植物算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

食肉植物参数设置如下:

%% 食肉植物参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述

从结果来看,食肉植物-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/215393.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[网鼎杯 2020 朱雀组]phpweb

看一下源码 应该是输入的date 作为函数,value作为内部参数的值,将date()函数返回的结果显示在页面上 回去看的时候,意外发现页面有了新的跳转,观察一下发现,页面每隔五秒就会发生一次跳转 所以就抓包看看 抓包发现po…

Java自动装箱(autoboxing)和自动拆箱(autounboxing)介绍

Java自动装箱(autoboxing)和自动拆箱(autounboxing)介绍 先回顾一下 Java 中的基本数据类型和包装类。 基本数据类型(Primitive Data Types): Java 提供了一组基本数据类型,有8种基本数据类型:byte、short、int、long…

【教3妹学编程-算法题】统计和小于目标的下标对数目

2哥 : 3妹,OpenAI的宫斗剧迎来了大结局!OpenAI宣布阿尔特曼复职CEO,董事会重组 3妹:啊?到底谁才是幕后操纵者啊,有咩有揪出来 2哥 : 也不是很清楚,据说在被开除的几周前,前CEO曾谴责…

jQuery_04 jQuery选择器应用

jQuery中的选择器 1.基本选择器 1.1 id $("#id值") id名称 1.2 class $(".class值") class名称 1.3 标签选择器 $("标签名字") 标签名称 1.4 所有选择器 $("*") 所有标签 1.5 组合选择器 …

ArkTS-自定义组件学习

文章目录 创建自定义组件页面和自定义组件生命周期自定义组件和页面的区别页面生命周期(即被Entry修饰的组件)组件生命周期(即被Component修饰的组件) Builder装饰器:自定义构建函数按引用传递参数按值传递参数 BuilderParam装饰器:引用Builder函数 这个…

IO口速度影响了什么?

我们在初学单片机的时候都知道单片机GPIO的作用是巨大的,在配置GPIO的时候,结构体初始化里有一个选项是配置输入输出速度的,对于这个速度输出是必须要配置的,输入没有明令说明需不需要配置。 这个速度对于学习过32单片机的都应该知…

汽车电子 -- 根据DBC解析CAN报文

采集的CAN报文,怎么通过DBC解析呢?有一下几种方法。 首先需要确认是CAN2.0 还是CAN FD报文。 还有是 实时解析 和 采集数据 进行解析。 一、CAN2.0报文实时解析: 1、CANTest工具 使用CAN分析仪 CANalyst-II,采集CAN报文。 使用…

XG916Ⅱ轮式装载机后驱动桥设计机械设计CAD

wx供重浩:创享日记 对话框发送:装载机 获取完整论文报告工程源文件 本次设计内容为XG916Ⅱ装载机后驱动桥设计,大致上分为主传动的设计,差速器的设计,半轴的设计,最终传动的设计四大部分。其中主传动锥齿轮…

【element优化经验】el-dialog修改title样式

目录 前言 解决之路 1.把默认的这个图标隐藏,官方的api有这个属性:showClose值设置false. 2.title插槽定制:左边定制标题,右边定制按钮区域。 3.背景颜色修改:默认title是有padding的需要把它重写调,然…

(Matalb时序预测)GA-BP遗传算法优化BP神经网络的多维时序回归预测

目录 一、程序及算法内容介绍: 基本内容: 亮点与优势: 二、实际运行效果: 三、部分代码 四、本文代码数据说明手册分享: 一、程序及算法内容介绍: 基本内容: 本代码基于Matalb平台编译&am…

uniapp适配微信隐私协议开发指南[uniapp+vue3+js]

没怎么做过uniapp,找了一些文章做了出来,给大家分享一下 2023.9.15以后需要适配微信的隐私协议开发指南 目前uniapp的说法是微信小程序隐私协议开发指南 | uni-app官网 微信小程序小程序隐私协议开发指南 | 微信开放文档 微信官方提供了几个demo 完…

【Java 进阶篇】Jedis:让Java与Redis轻松对话的利器

在现代软件开发中,缓存系统是提高系统性能的常见手段之一,而Redis作为一个高性能的缓存数据库,被广泛应用于各类系统。如果你是Java开发者,那么使用Jedis库可以让你轻松地与Redis进行交互。本文将带你深入了解Jedis的快速入门&…