1.5 纹理

这次笔记时间有点久,主要是这节课讲的东西需要很多基础来铺垫,看完了后感觉缺失信息很多,又去补了GAMES 101 3~10节内容。 强烈建议看不懂的先去学习GMAES101 网址Lecture 08 Shading 2 (Shading, Pipeline and Texture Mapping)_哔哩哔哩_bilibili

纹理

 

宏观的角度上来说就是一张2D图片,一个像素上有 RGB 值。

为什么要有纹理

纹理的出现

    • 减少建模工作量 <=>牺牲几何细节
    • 减少存储空间
    • 增加读取速度

如果一个模型我们要把所有的细节都表现出来,那无疑是一个巨大工作量,对于简单的模型还好说,但是当我们把工作转换到人体模型上面,人体结构的复杂,外加服装可能各式各样,花式不同,这无疑增大了建模师的工作量。

但是我们如果将一个纹理贴到这些模型上,能保证模拟物体表面的技术没有太大变化,在省略了很多细节之后,也能大致还原原来的表现形式

纹理管线

纹理管线是将纹理映射到屏幕像素上的过程。

模型空间位置→投影函数→纹理映射→纹理坐标→通讯函数→新纹理坐标→纹理采样(避免依赖纹理读取)→纹理值。

投影函数:这里与摄像机投影不同,这里是指展UV的技术

依赖纹理读取:也就是只要不是顶点着色器传过来的纹理采样数据,在片元着色器需要计算 UV 偏移,哪怕只是进行了一些计算,也会严重影响性能表现,所以我们需要把 UV 偏移等这些计算放在顶点着色器中计算

纹理采样设置

Wrap Mode

决定 UV 值在[0,1]以外的表现

OpenGL -- "包装模式"(Wrapping Model)

DirectX -- "纹理寻址模式"(Texture Addressing Mode)

Repeat —— 重复

Mirror —— 镜像

Clamp —— 这个图形的边界

Border —— 当超过这个范围的其他位置的颜色需要设置

Filter Model

过滤设置,当纹理通过变化产生拉伸的时候,要使用哪种滤波来进行纹理的表现。


-------后续参考GAMES 101 09---------


为何有纹理

假设有两个光源打到球上,这个球上面有不同的颜色,也就是说kd的值不同,我们希望能用一种方式来定义这个球上的每一个顶点的属性(纹理坐标、颜色、法线向量等等)。

因此引入纹理。

纹理

纹理可以理解为时覆盖在物体表面的一层布,布上面有着图像,将布放平则得到一个2D图片(Texture)。

所以我们可以认为任何物体表面的图像,都可以撕下来,展开成一张2D图片。同时,图片上的每个点也都能对应上物体上的位置。

纹理映射于物体表面

上图所示,空间中的三角面对应纹理中三角形的位置关系

纹理贴图有着自己的纹理坐标,我们一般默认将纹理贴图展开后x轴为u,y轴为v,(在纹理坐标中越往u方向默认颜色为红色,v方向默认为绿色)。

纹理贴图也是我们经常提到的uv图

正常uv图展示

渲染好的场景

显示UV坐标下的场景

纹理采样

可以理解为将纹理上的点对应上空间中每一个点。

重心坐标

当由于模型都是由三角面构成,而我们开始拿到的数据是顶点数据,这时我们需要对三角形内部进行插值运算让每个点都平滑过渡,从而得到好的画面效果。

如何进行平滑过渡,则需要用到重心坐标。

假设点(x,y)是△ABC的重心坐标,则有:

    • (x,y) = αA+βB+γC
    • α+β+γ = 1 结论:限制重心点在ABC所在平面内(为何等于1,因为解释起来复杂,视频未解释)
    • (x,y)点在三角形内部,即(α>0 β>0 γ>0)或者(α<0 β<0 γ<0)。

同时满足上面三个条件,则认为(x,y)为△ABC的重心坐标。

由上图可知,AA、AB、AC三角形的面积,分别比上大三角形ABC的面积,得到的比值分别为 α、β、γ 。

(此处α、β、γ为何与第一个特性的α、β、γ对应上,可以参考下方链接有详细的证明步骤)

由此可得,图右公式

根据前两个特性,可得如图所示公式。

最终可得V点坐标,又如开头所说,顶点可以代表任意属性,位置、纹理坐标、颜色、法线、深度、材质等等。

更具体的重心坐标算法可以参考:重心坐标(Barycentric coordinates) - 知乎

但是要注意,这时候三角形已经投影到屏幕上了,尤其对于在三维空间中的属性(比如深度信息),应该找到像素中心点对应三角形的位置的三维空间坐标,然后在三维空间中将A、B、C的深度(属性)插值好,再放回来。这个过程需要做一次逆变换就可以了。





 

由于空间中的任意三角形顶点都是已知的,上面又可以求出三角形内部的重心坐标。因此我们可以通过差值求出世界空间中三角形内任意一点,然后就可以通过纹理坐标(UV坐标)查询到对应纹理的UV值,这样就可以拿来用了(例如最开始提到的Kd)。

采样方式

当一张图片的大小小于屏幕像素时,就会发生图片的拉伸,导致图片模糊。

纹理上的纹素、纹理元素(texel)无法一一对应上屏幕上的像素,像素个数>纹素个数,导致在采样时形成类似于马赛克的块状区域。如下图所示。

为应对上述问题,采用以下方法

临近点采样(Nearest)

顾名思义,直接采样里当前像素对应uv坐标中最近的纹素。

优点:速度非常快。

缺点:当纹素个数<像素个数时会产生方块,类似马赛克效果。

双线性差值(Bilinear Interpolation)

红点为像素,黑点黑框代表纹理。

目的:球红点处对应的纹理属性。

选取当前红点周围四个纹素区域。

此时得到u0(u01与u11的差值),u1(u00与u10的差值)。

再计算u0与u1的差值来得到最终红点的数值,即周围四个区域的差值。

每一个像素点都依次求值最终得到的数值就是Blinear后的结果。

优点:速度快

缺点:最终采样略有瑕疵。

Bicubic

相较于双线性插值算法采样周围四个点,Bicubic则是采样周围16个点。

优点:得到的图片效果相比于前两个最佳。

缺点:相比于前两个速度最慢。

问题与优化

摩尔纹

当一张纹理大小过大大于屏幕像素时就会出现摩尔纹。

原因是因为远处的图像变小,导致一个像素会覆盖对应uv图中一个大的区域,如果按照点采样的话,周围覆盖的纹素信息就会丢失,导致画面信息缺失,出现摩尔纹的情况。

一个简单粗暴的办法就是进行超采样处理,譬如上图右边进行512次的采样,这样就会一定程度上保证画面完整性。

优点:画面最好。

缺点:消耗过大,无法在手机上使用,PC上消耗也很大。

Mipmap

Mipmap的范围查询三个特点:快(查询速度非常快)、大约(是查询的近似值)、方形(查询区域仅可以是方形)。

Mipmap就是将原图片进行等比缩放,每次缩放为原来的2的n次幂,如上图所示。

最终得到的Mipmap图,比原图多了1/3大小。

先要算出当前像素所用的Mipmap等级(D),就要计算出当前区域内像素对应uv坐标里的数值,然后根据计算得到的数值,来选择使用哪个等级的Mipmap。

一个三角形中两个相邻的像素点预估覆盖的区域,在UV坐标中分别对应的点,如上图所示。

以红色的像素点为例,计算出相邻两个像素点在对应UV坐标下的距离L。式子中的dx应该是采用了微分的思想算的。

求得的L当做当前纹理上的长度,又因为默认长度为1(单位长度),所以采取D的等级是

如果这个正方形区域就是1×1,那么就表明一个像素正好对应一个边长为L的正方形区域,也就可以直接在最 原始(第0层,D=0)的纹理上找对应的像素,就是它的值。

如歌这个正方形区域是2×2,那么这个区域会在第1层(D=1)上对应一个像素

如果这个正方形区域是4×4,那么这个区域会在第2层(D=2)上对应一个像素

对于L×L大小的正方形,一定会在D=log2L层上对应到一个像素。

因此我们只需要算出D,即在第几层正方形的区域对应一个像素,就可以得出这个区域内平均值是多少。

将这个分层的过程可视化,如上图所示。

但是会发现,两层之间有很明显的边界,那么在实际纹理映射的过程中可能会出现一些缝。

在此处我们的解决方法是,先找D层,再找D+1层,这两层内部分别用双线性插值把对应的在这两层上的查询做出来,做出来之后把这两个双线性插值的值合到一起,然后在层与层之间再做一次插值。总共做了三步插值,在双线性插值上又加了一步插值,这就是三线性插值。这样我就可以在任意层,无论是整数层还是浮点数层(例如第1.8层,D=1.8)。

各向异性(Anisotropic Filtering)

三线性插值后得到的结果,相较于超采样出来图像,发现在远处的图像全都重叠在了一起。这是因为三线性插值是按照一个方格一个方格来计算的,当碰到斜着的纹理时就无法很好处理这种情况。

这时就需要用到另一种方式来处理纹理——各向异性(Anisotropic Filtering)

这种方式生成的图片考虑到了图片斜着的情况,即对角线图片,如上图所示。同时图片的大小是原来图片的3倍。

EWA Filtering

人们发明了另外一些方法,如EWA,对于任何一个形状,都可以拆成很多不同的圆形去覆盖这个形状。如上图查询一个椭圆,将其拆成三个圆形,每次去查询一个圆形,多次查询自然就可以得到一个区域,但是代价是“多次查询”。可见质量越高的效果,性能开销越大。

环境贴图

将环境信息放到贴图上,然后采样到物体上得到物体在场景中的环境信息。

球形环境贴图。

球形贴图的问题

将球形贴图展开来看图片的上方和下方都有明显的扭曲。

CubeMap

如何解决球形贴图的问题。

将球想象它在一个立方体内,然后将球表面的纹理信息映射到立方体表面,这样就得到了cubemap。

CubeMap展开后的样子。

法线贴图

用来模拟物体顶点位置的法线。

p为原本顶点位置,n为经过法线贴图变换的p点的位置,此时p点的法线和n点的法线已经不同。

2D空间中,求n点法线。

我们认为,某点p原来的法线n为(0, 1) ,我们要求出改变后的法线,首先就要求出切线,设切向量为(x,y)

由于点p内存储着这一点的高度信息,因此会改变p点的高度,为h(p),利用微分的思想,我们再去找相邻像素点的位置,即p+1处,也有一个高度h(p+1),通过这两点的高度差,就可以算出切向量的y值,即为dp,x的值就是相邻两个像素的x,为1,因此切向量即为(1,dp),所以法向量就是(-dp,1),即法线为(-dp,1)。

3D空间下求得的法线为

位移贴图(置换贴图)

法线贴图只是模拟物体表面顶点的法线方向,而位移贴图则是实际的改变了物体表面顶点的位置。

噪声图

还可以定义三维纹理,如果把这个球砍一半,可以看到其内部的纹理,这里实际定义了空间中任何一点的值,这种纹理实际没有真的生成纹理的图片,而是定义了一个在三维空间中的噪声函数,对于空间中任意一点都有一个解析式可以算出在该点的值。

环境光遮蔽图、AO图(Ambient Occlusion)

模拟模型被光照后自身所产生的的阴影效果。

3D Textures and Volume Rendering

体渲染中,用3D纹理可以存储物体的密度等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/21547.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

APP开发中的数据安全:你需要知道的一切

APP开发中的数据安全&#xff0c;是指 APP开发过程中&#xff0c;所有的数据都会经过严格的安全处理。因为目前 APP开发公司的技术、资质良莠不齐&#xff0c;很多企业在开发过程中不注重对数据安全的保护。 在如今大数据时代&#xff0c; APP开发过程中&#xff0c;会产生大量…

unidbg或者java层解密方法IDEA中打包成jar包供python调用方法

一、导出jar包方法 &#xff08;1&#xff09;配置jar包参数 &#xff08;2&#xff09;创建生成jar包 成功生成&#xff01; 二、Python代码调用 import jpypejvmPath jpype.getDefaultJVMPath() d unidbg-android.jar # 对应jar地址 jpype.startJVM(jvmPath, "-ea&q…

Docker 运行花生壳实现内外网穿透

Docker 运行花生壳实现内外网穿透 1、docker安装centos2、进入centos容器安装花生壳客户端3、花生壳绑定设备4、测试外网穿透 1、docker安装centos 使用命令行安装centos7 docker run --privilegedtrue --restartalways -e TZ"Asia/Shanghai" -d --nethost --nam…

vue生命周期四个阶段(created和mount)

1.四个阶段 1&#xff09;必经阶段 2&#xff09;非必经阶段 提示&#xff1a;主动调用 vm.$destroy() 函数销毁后&#xff0c;可用 vm.$mount("#app") 将断开的 new Vue() 和页面重新建立虚拟 DOM 树&#xff0c;重新绑定起来挂载界面。 2. 生命周期钩子函数&…

利用python绘制二三维曲面和矢量流线图

为了实现不同数据的可视化&#xff0c;最近研究了python环境下的可视化方案&#xff0c;为后续的流体运动仿真模拟做好储备&#xff0c;由于python处理数据的便利性&#xff0c;导致目前很多后端处理或者可视化成图操作都在python中实现&#xff0c;比如前端是vue&#xff0c;加…

2023-07-11力扣每日一题

链接&#xff1a; https://leetcode.cn/problems/maximum-alternating-subsequence-sum/ 题意&#xff1a; 给定一个数组&#xff0c;求一个子序列&#xff0c;使这个子序列的奇数位和-偶数位和最大&#xff08;下标从1开始的话|反正第一个数是&#xff09; 解&#xff1a;…

抽象的计算机模型——图灵机之一发入魂

图灵机由英国数学家和计算机科学家阿兰图灵&#xff08;Alan Turing&#xff09;于1936年提出。它是一种抽象的计算设备&#xff0c;是一种理论上的计算模型&#xff0c;用于描述和模拟计算的过程&#xff0c;至于为什么要做计算可参考我另外一篇文章。可以说&#xff0c;图灵机…

什么是vlan为什么要划分vlan

首先了解交换机的数据的转发方式。&#xff0c;有两种情况会使用广播方式进行数据分发&#xff0c;第一种就是目的地址是全F的&#xff08;FF-FF-FF-FF-FF-FF&#xff09;&#xff0c;第二种是位置的单播帧&#xff0c;这样的情况下会带来什么杨的问题呢。 场景引入&#xff1…

GitLab CICD Day 08 - 环境变量

1.局部/全局环境变量 stages:- testing # stage编排- build- deployvariables:global_var: "全部变量" #全部变量build_image:stage: buildvariables: #局部环境变量my_name: "局部环境变量" tags:- shell script:- …

JavaScript--事件处理高级应用

1、什么是事件 指在特定条件下触发的操作或响应。事件可以是用户与网页交互时引起的动作&#xff0c;例如点击按钮、提交表单、鼠标移动等&#xff0c;也可以是由浏览器或其他代码触发的动作&#xff0c;如页面加载完成、时间到达等。 我们可以通过添加事件处理程序来响应各种…

tomcat学习随笔

Tomcat结构与原理 一、组成ServerServiceConnectorProtocolHandlerEndpointProcessor Adaptor ContainerEngineHostContextWrapper 运行热部署jsp类war tomcat根路径目录结构示意图 一、组成 tomcat结构debug示意图 Server tomcat的实例&#xff0c;支持多个Service Service …

Python(八)字符编码

❤️ 专栏简介&#xff1a;本专栏记录了我个人从零开始学习Python编程的过程。在这个专栏中&#xff0c;我将分享我在学习Python的过程中的学习笔记、学习路线以及各个知识点。 ☀️ 专栏适用人群 &#xff1a;本专栏适用于希望学习Python编程的初学者和有一定编程基础的人。无…