LangChain 9 模型Model I/O 聊天提示词ChatPromptTemplate, 少量样本提示词FewShotPrompt

LangChain系列文章

  1. LangChain 实现给动物取名字,
  2. LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字
  3. LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄
  4. LangChain 4用向量数据库Faiss存储,读取YouTube的视频文本搜索Indexes for information retrieve
  5. LangChain 5易速鲜花内部问答系统
  6. LangChain 6根据图片生成推广文案HuggingFace中的image-caption模型
  7. LangChain 7 文本模型TextLangChain和聊天模型ChatLangChain
  8. LangChain 8 模型Model I/O:输入提示、调用模型、解析输出

在这里插入图片描述

语言模型的提示是用户提供的一组指令或输入,用于指导模型的响应,帮助它理解上下文并生成相关和连贯的基于语言的输出,比如回答问题、完成句子或参与对话。

LangChain提供了几个类和函数来帮助构建和处理提示。

  • Prompt templates提示模板:参数化模型输入
  • Example selectors示例选择器:动态选择要包含在提示中的示例

提示模板是预定义的配方,用于生成语言模型的提示。

模板可能包括说明、少量示例,以及适用于特定任务的具体背景和问题。

LangChain提供工具来创建和使用提示模板。

LangChain致力于创建模型无关的模板,以便轻松地在不同的语言模型之间重用现有的模板。

通常,语言模型期望提示要么是一个字符串,要么是一个聊天消息列表。

1. ChatPromptTemplate

聊天模型的提示是一系列聊天消息。

每条聊天消息都与内容和一个称为角色的额外参数相关联。例如,在OpenAI Chat Completions API中,聊天消息可以与AI助手、人类或系统角色相关联。
文件名字chat_prompt_template.py(代码参考了黄佳老师的课程Demo,如需要知道代码细节请读原文)

# 导入Langchain库中的OpenAI模块,该模块提供了与OpenAI语言模型交互的功能
from langchain.llms import OpenAI  # 导入Langchain库中的PromptTemplate模块,用于创建和管理提示模板
from langchain.prompts import PromptTemplate  # 导入Langchain库中的LLMChain模块,它允许构建基于大型语言模型的处理链
from langchain.chains import LLMChain  # 导入dotenv库,用于从.env文件加载环境变量,这对于管理敏感数据如API密钥很有用
from dotenv import load_dotenv  # 导入Langchain库中的ChatOpenAI类,用于创建和管理OpenAI聊天模型的实例。
from langchain.chat_models import ChatOpenAI# 调用dotenv库的load_dotenv函数来加载.env文件中的环境变量。
# 这通常用于管理敏感数据,如API密钥。
load_dotenv()  # 创建一个ChatOpenAI实例,配置它使用gpt-3.5-turbo模型,
# 设定温度参数为0.7(控制创造性的随机性)和最大令牌数为60(限制响应长度)。
chat = ChatOpenAI(model="gpt-3.5-turbo",temperature=0.7,max_tokens=120
)
# 导入Langchain库中的模板类,用于创建聊天式的提示。
from langchain.prompts import (ChatPromptTemplate,SystemMessagePromptTemplate,HumanMessagePromptTemplate
)# 定义一个系统消息模板,用来设定AI的角色和任务(这里是起名字专家)。
template = "你是一位起名字专家,负责为专注于{product}的公司起名。"
system_message_prompt = SystemMessagePromptTemplate.from_template(template)# 定义一个人类消息模板,用来模拟用户的提问(这里是请求为公司起名)。
human_template = "请为我们的公司起个名字,我们专注于{product_detail}。"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)# 将系统消息和人类消息的模板组合成一个聊天提示模板。
prompt_template = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])# 使用聊天提示模板生成具体的聊天提示,这里指定产品为“水果”和产品细节为“高端送礼设计”。
prompt = prompt_template.format_prompt(product="水果", product_detail="高端送礼设计").to_messages()# 使用chat函数(需要事先定义)发送生成的提示,获取结果。
result = chat(prompt)# 打印聊天结果。
print(result)

运行输出

zgpeaces-MBP at ~/Workspace/LLM/langchain-llm-app ±(feature/textAndChat) ✗ ❯ python chat_prompt_template.py
content='果香珍品'
zgpeaces-MBP at ~/Workspace/LLM/langchain-llm-app ±(feature/textAndChat) ✗ ❯ python chat_prompt_template.py
content='水果佳礼'
zgpeaces-MBP at ~/Workspace/LLM/langchain-llm-app ±(feature/textAndChat) ✗ ❯ python chat_prompt_template.py
content='果香尚礼'

2. Few Shot Prompt

文件名text_prompt_few_shot.py

# 导入Langchain库中的OpenAI模块,该模块提供了与OpenAI语言模型交互的功能
from langchain.llms import OpenAI  # 导入Langchain库中的PromptTemplate模块,用于创建和管理提示模板
from langchain.prompts import PromptTemplate  # 导入Langchain库中的LLMChain模块,它允许构建基于大型语言模型的处理链
from langchain.chains import LLMChain  # 导入dotenv库,用于从.env文件加载环境变量,这对于管理敏感数据如API密钥很有用
from dotenv import load_dotenv  # 调用load_dotenv函数来加载.env文件中的环境变量
load_dotenv()  # 使用OpenAI类创建一个名为llm的实例。这个实例配置了用于生成文本的模型参数。
# 模型使用的是"text-davinci-003",这是一个高级的GPT-3模型。
# temperature设置为0.8,这决定了生成文本的随机性和创造性。
# max_tokens设置为60,限制生成文本的最大长度。
llm = OpenAI(model="text-davinci-003",temperature=0.6,max_tokens=120
)samples = [{"fruit_type": "玫瑰葡萄","occasion": "爱情","ad_copy": "玫瑰,浪漫的象征,是你向心爱的人表达爱意的最佳选择。"},{"fruit_type": "金钻菠萝","occasion": "庆祝","ad_copy": "金钻菠萝,庆祝的完美伴侣,为您的特别时刻增添甜蜜与奢华。"},{"fruit_type": "蜜瓜","occasion": "休闲","ad_copy": "蜜瓜,休闲时光的甜蜜伴侣,让您的闲暇时光更加美好。"},{"fruit_type": "富士苹果","occasion": "健康","ad_copy": "富士苹果,健康生活的选择,丰富您的营养,活力每一天。"}
]# 导入PromptTemplate类,用于创建和管理提示模板。
from langchain.prompts import PromptTemplate# 定义一个提示模板,包括水果类型、场景和广告文案。
# {fruit_type}, {occasion}, 和 {ad_copy} 是占位符,稍后将被替换。
template = "水果类型:{fruit_type}\n场景:{occasion}\n广告文案:{ad_copy}\n"# 创建一个PromptTemplate实例,传入输入变量和模板。
prompt_sample = PromptTemplate(input_variables=["fruit_type", "occasion", "ad_copy"], template=template)# 使用format方法格式化提示,使用samples列表中的第一个样本数据。
# 假设samples是一个预先定义的包含多个样本的列表。
print(prompt_sample.format(**samples[0]))# 导入FewShotPromptTemplate类,用于创建包含多个示例的提示模板。
from langchain.prompts.few_shot import FewShotPromptTemplate# 创建一个FewShotPromptTemplate实例。
# 使用samples作为示例,prompt_sample作为每个示例的格式,定义输入变量和后缀。
prompt = FewShotPromptTemplate(examples=samples,example_prompt=prompt_sample,suffix="水果类型:{fruit_type}\n场景:{occasion}",input_variables=["fruit_type", "occasion"],
)
# 格式化提示,用于生成特定水果类型和场景的广告文案。
print(prompt.format(fruit_type="玫瑰葡萄", occasion="爱情"))# 使用语言模型(如GPT-3)生成文案。
result = llm(prompt.format(fruit_type="火龙果", occasion="爱情"))
print(result)

运行

zgpeaces-MBP at ~/Workspace/LLM/langchain-llm-app ±(feature/textAndChat) ✗ ❯ python text_prompt_few_shot.py
水果类型:玫瑰葡萄
场景:爱情
广告文案:玫瑰,浪漫的象征,是你向心爱的人表达爱意的最佳选择。水果类型:玫瑰葡萄
场景:爱情
广告文案:玫瑰,浪漫的象征,是你向心爱的人表达爱意的最佳选择。水果类型:金钻菠萝
场景:庆祝
广告文案:金钻菠萝,庆祝的完美伴侣,为您的特别时刻增添甜蜜与奢华。水果类型:蜜瓜
场景:休闲
广告文案:蜜瓜,休闲时光的甜蜜伴侣,让您的闲暇时光更加美好。水果类型:富士苹果
场景:健康
广告文案:富士苹果,健康生活的选择,丰富您的营养,活力每一天。水果类型:玫瑰葡萄
场景:爱情广告文案:火龙果,爱情的最佳象征,让你的爱情更加灿烂耀眼。

在这里插入图片描述

3. 提示工程(Prompt Engineering)

是指在与大型语言模型(如GPT-3或GPT-4)交互时,精心设计输入(即“提示”)的过程,以获得最佳的输出结果。这一过程对于充分利用大型语言模型的能力至关重要。以下是进行有效提示工程的几个关键原则:

1. 明确目标

  • 具体目标:在设计提示之前,要明确你想从模型中获取什么类型的信息或响应。
  • 明确指令:确保提示清晰、具体,避免模糊不清的要求。

2. 理解模型的能力和限制

  • 能力范围:了解模型的强项和弱点,以及它在处理特定类型的任务时的性能。
  • 避免误解:避免提问模型无法准确回答的问题,例如关于未来的预测、过于复杂或专业的主题。

3. 使用清晰、简洁的语言

  • 简洁性:避免冗长和复杂的句子结构。简洁的提示有助于模型更好地理解意图。
  • 无歧义:确保语言明确,避免可能产生歧义的表述。

4. 结构化提示

  • 逻辑流程:如果问题涉及多个步骤或要点,使用有逻辑顺序和清晰结构的提示。
  • 上下文信息:如果需要,提供足够的背景信息或上下文,帮助模型更好地理解和回应。

5. 迭代和调整

  • 试错法:可能需要多次尝试和调整提示,以获得最佳结果。
  • 分析响应:基于模型的响应对提示进行微调。

6. 利用范例和模板

  • 使用示例:提供具体示例可以帮助模型理解预期输出的格式和风格。
  • 模板化:对于常见任务,可以创建并复用有效的提示模板。

7. 考虑伦理和偏见

  • 避免偏见:设计提示时要意识到潜在的偏见和不准确性。
  • 伦理使用:确保使用模型的方式符合伦理标准,避免伤害和误导。

8. 实验和反馈

  • 持续测试:不断测试和优化提示,以提高响应的质量和相关性。
  • 学习和调整:根据实验结果和用户反馈调整策略。

9. 适应特定用途

  • 针对性:根据特定应用场景或行业需求定制提示。
  • 多样性应用:对于不同的任务和目标,采用不同的提示策略。

通过遵循这些原则,可以更有效地利用大型语言模型,提高其在各种任务和应用中的性能和准确性。

在这里插入图片描述

代码

  • https://github.com/zgpeace/pets-name-langchain/tree/feature/textAndChat
  • https://github.com/huangjia2019/langchain/tree/main/03_%E6%A8%A1%E5%9E%8BIO

参考

https://python.langchain.com/docs/modules/model_io/

参考

  • https://platform.openai.com/docs/guides/prompt-engineering

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/215699.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

部署系列六基于nndeploy的深度学习 图像降噪unet部署

文章目录 1.直接在源代码demo中修改2. 如何修改呢?3. 修改 graph4. 总结 https://github.com/DeployAI/nndeploy https://nndeploy-zh.readthedocs.io/zh/latest/introduction/index.html 通过以上2个官方链接对nndeploy基本的使用方法应该有所了解了。 下面就是利用…

HTML网站稳定性状态监控平台源码

这是一款网站稳定性状态监控平台源码,它基于UptimeRobot接口进行开发。当您的网站遇到故障时,该平台能够通过邮件或短信通知您。下面是对安装过程的详细说明: 安装步骤 将源码上传至您的主机或服务器,并进行解压操作。 在Uptim…

Excel动态选择某一行/列的最后一个数据

选择列的最后一个数据&#xff1a; 以A列为例&#xff0c;使用&#xff1a; LOOKUP(1,0/(A:A<>""),A:A)选择行的最后一个数据&#xff1a; 以第3行为例&#xff0c;使用&#xff1a; LOOKUP(1,0/(3:3<>""),3:3)示例程序 列最后一个数据&a…

网站定制开发主要分类有哪些|企业 app 软件小程序定制

网站定制开发主要分类有哪些|企业 app 软件小程序定制 网站定制开发是指根据客户需求&#xff0c;为其量身定制设计和开发的网站服务。目前&#xff0c;网站定制开发主要分为以下几个分类&#xff1a; 1.静态网站定制开发&#xff1a;静态网站是由 HTML、CSS 和 JavaScript 等静…

Python开发运维:Django 4.2.7 使用Celery 5.3.5 完成异步和定时任务

目录 一、实验 1.Django使用Celery完成异步和定时任务 二、实验 1. 如何查看Django版本 一、实验 1.Django使用Celery完成异步和定时任务 (1)安装Django (2)新建Django项目 (3)初始框架 (4)urls.py引用视图views from django.contrib import admin from django.urls imp…

记录一些免费的 API接口

主要记录一些日常开发中可以使用到的一些免费api接口&#xff0c;目前包括 ip地址查询、天气查询 通过 IP 查询地址 ip-api (不支持 https) &#x1f4a1; api接口文档 &#x1f579; 调用接口 $ curl http://ip-api.com/json&#x1f4dd; 返回信息&#xff08;位置信息&…

CSS:浏览器设置placeholder样式 / 微信小程序设置placeholder样式

一、web 设置placeholder 设置浏览器的placeholder样式 ::-webkit-input-placeholder { /* WebKit browsers */color: #999; } :-moz-placeholder { /* Mozilla Firefox 4 to 18 */color: #999; } ::-moz-placeholder { /* Mozilla Firefox 19 */color: #999; } :-ms-input-p…

Tars-GO 开发

默认环境是安装好的 创建服务: tarsgo make App Server Servant GoModuleName Tars 实例的名称&#xff0c;有三个层级&#xff0c;分别是 App&#xff08;应用&#xff09;、Server&#xff08;服务&#xff09;、Servant&#xff08;服务者&#xff0c;有时也称 Object&am…

红黑树详解

红黑树的概念与性质 前置知识 在学习红黑树之前&#xff0c;最好有二叉查找树和AVL树的基础&#xff0c;因为红黑树本质就是一种特殊的二叉查找树&#xff0c;而红黑树的操作中需要用到AVL树中旋转的相关知识。至于二叉查找树和AVL树&#xff0c;可以参考如下两篇博客&#xf…

【XSLVGL2.0】如何新增一种语言和词条

XSLVGL2.0 开发手册 【XSLVGL2.0】如何新增一种语言和词条 1、概述2、以外置资源的方式增加词条3、以内置资源的方式增加词条4、使用方法1、概述 本文件旨在介绍新增一种语言词条的方法 2、以外置资源的方式增加词条 假设项目需要增加一种英文的词条。一般地,我们采用国际…

计算机网络——路由

文章目录 1. 前言&#xff1a;2. 路由基础2.1. 路由的相关概念2.2. 路由的特征2.3. 路由的过程 3 路由协议3.1. 静态路由&#xff1a;3.2. 动态路由&#xff1a;3.2.1. 距离矢量协议3.2.2. OSPF协议&#xff1a;3.2.2.1.OSPF概述OSPF的工作原理路由计算功能特性 3.2.2.2.OSPF报…

io.lettuce.core.RedisCommandExecutionException

io.lettuce.core.RedisCommandExecutionException: ERR invalid password ERR invalid password-CSDN博客 io.lettuce.core.RedisCommandExecutionException /** Copyright 2011-2022 the original author or authors.** Licensed under the Apache License, Version 2.0 (the…