01、Tensorflow实现二元手写数字识别

01、Tensorflow实现二元手写数字识别(二分类问题)

开始学习机器学习啦,已经把吴恩达的课全部刷完了,现在开始熟悉一下复现代码。对这个手写数字实部比较感兴趣,作为入门的素材非常合适。

基于Tensorflow 2.10.0

1、识别目标

识别手写仅仅是为了区分手写的0和1,所以实际上是一个二分类问题。

2、Tensorflow算法实现

STEP1:导入相关包

import numpy as np
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import warnings
import logging
from sklearn.metrics import accuracy_score

import numpy as np:这是引入numpy库,并为其设置一个缩写np。Numpy是Python中用于大规模数值计算的库,它提供了多维数组对象及一系列操作这些数组的函数。

import tensorflow as tf:这是引入tensorflow库,并为其设置一个缩写tf。TensorFlow是一个开源的深度学习框架,它被广泛用于各种深度学习应用。

from keras.models import Sequential:这是从Keras库中引入Sequential模型。Keras是一个高级神经网络API,它可以运行在TensorFlow之上。Sequential模型是Keras中的线性堆栈模型,允许你简单地堆叠多个网络层。

from keras.layers import Dense:这是从Keras库中引入Dense层。Dense层是神经网络中的全连接层,每个输入节点与输出节点都是连接的。

from sklearn.model_selection import train_test_split:这是从scikit-learn库中引入train_test_split函数。这个函数用于将数据分割为训练集和测试集。

import matplotlib.pyplot as plt:这是引入matplotlib的pyplot模块,并为其设置一个缩写plt。Matplotlib是Python中的绘图库,而pyplot是其中的一个模块,用于绘制各种图形和图像。

import warnings:这是引入Python的标准警告库,它可以用来发出警告,或者过滤掉不需要的警告。

import logging:这是引入Python的标准日志库,用于记录日志信息,方便追踪和调试代码。

from sklearn.metrics import accuracy_score:这是从scikit-learn库中引入accuracy_score函数。这个函数用于计算分类准确率,常用于评估分类模型的性能。


STEP2:屏蔽无用警告并允许中文

logging.getLogger("tensorflow").setLevel(logging.ERROR)
tf.autograph.set_verbosity(0)
warnings.simplefilter(action='ignore', category=FutureWarning)
# 支持中文显示
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False

logging.getLogger(“tensorflow”).setLevel(logging.ERROR):这行代码用于设置 TensorFlow 的日志级别为 ERROR。这意味着只有当 TensorFlow 中发生错误时,才会在日志中输出相关信息。较低级别的日志信息(如 WARNING、INFO、DEBUG)将被忽略。

tf.autograph.set_verbosity(0):这行代码用于设置 TensorFlow 的自动图形(Autograph)日志的冗长级别为 0。这意味着在将 Python 代码转换为 TensorFlow 图形代码时,将不会输出任何日志信息。这有助于减少日志噪音,使日志更加干净。

warnings.simplefilter(action=‘ignore’,category=FutureWarning):这行代码用于忽略所有 FutureWarning 类型的警告。在 Python中,当使用某些即将过时或未来版本中可能发生变化的特性时,通常会发出 FutureWarning。通过设置action=‘ignore’,代码将不会输出这类警告,使控制台输出更加干净。

plt.rcParams[‘font.sans-serif’]=[‘SimHei’]:这行代码用于设置 matplotlib 中的默认无衬线字体为 SimHei。SimHei 是一种常用于显示中文的字体,这样设置后,matplotlib 将在绘图时使用 SimHei 字体来显示中文,从而避免中文乱码问题。

plt.rcParams[‘axes.unicode_minus’]=False:这行代码用于解决 matplotlib
中负号显示异常的问题。默认情况下,matplotlib 可能无法正确显示负号,将其设置为 False 可以使用 ASCII字符作为负号,从而正常显示。


STEP3:导入并划分数据集

划分10%作为测试:

X, y = load_data()
print('The shape of X is: ' + str(X.shape))
print('The shape of y is: ' + str(y.shape))
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)

STEP4:模型构建与训练

# 构建模型,三层模型进行分类,第一层输入100个神经元...
model = Sequential([tf.keras.Input(shape=(400,)),    #specify input size### START CODE HERE ###Dense(100, activation='sigmoid'),Dense(10, activation='sigmoid'),Dense(1, activation='sigmoid')### END CODE HERE ###], name = "my_model"
)
# 打印三层模型的参数
model.summary()
# 模型设定,学习率0.001,因为是分类,使用BinaryCrossentropy损失函数
model.compile(loss=tf.keras.losses.BinaryCrossentropy(),optimizer=tf.keras.optimizers.Adam(0.001),
)
# 开始训练,训练循环20
model.fit(X_train,y_train,epochs=20
)

STEP5:结果可视化与打印准确度信息
原始的输入的数据集是400 * 1000的数组,共包含1000个手写数字的数据,其中400为20*20像素的图片,因此对每个400的数组进行reshape((20, 20))可以得到原始的图片进而绘图。

# 绘制测试集的预测结果,绘制64个
fig, axes = plt.subplots(8, 8, figsize=(8, 8))
fig.tight_layout(pad=0.1, rect=[0, 0.03, 1, 0.92])  # [left, bottom, right, top]
for i, ax in enumerate(axes.flat):# Select random indicesrandom_index = np.random.randint(X_test.shape[0])# Select rows corresponding to the random indices and# reshape the imageX_random_reshaped = X_test[random_index].reshape((20, 20)).T# Display the imageax.imshow(X_random_reshaped, cmap='gray')# Predict using the Neural Networkprediction = model.predict(X_test[random_index].reshape(1, 400))if prediction >= 0.5:yhat = 1else:yhat = 0# Display the label above the imageax.set_title(f"{y_test[random_index, 0]},{yhat}")ax.set_axis_off()
fig.suptitle("真实标签, 预测的标签", fontsize=16)
plt.show()# 给出预测的测试集误差
y_pred=model.predict(X_test)
print("测试数据集准确率为:", accuracy_score(y_test, np.round(y_pred)))

3、运行结果

按照最初的划分,数据集包含1000个数据,划分10%为测试集,也就是100个数据。结果可视化随机选择其中的64个数据绘图,每个图像的上方标明了其真实标签和预测的结果,这个是一个非常简单的示例,准确度还是非常高的。
在这里插入图片描述

在这里插入图片描述

4、工程下载与全部代码

工程链接:Tensorflow实现二元手写数字识别(二分类问题)

import numpy as np
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import warnings
import logging
from sklearn.metrics import accuracy_scorelogging.getLogger("tensorflow").setLevel(logging.ERROR)
tf.autograph.set_verbosity(0)
warnings.simplefilter(action='ignore', category=FutureWarning)
# 支持中文显示
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False# load dataset
def load_data():X = np.load("Handwritten_Digit_Recognition_data/X.npy")y = np.load("Handwritten_Digit_Recognition_data/y.npy")X = X[0:1000]y = y[0:1000]return X, y# 加载数据集,查看数据集大小,可以看到有1000个数据集,每个输入是20*20=400大小的图片
X, y = load_data()
print('The shape of X is: ' + str(X.shape))
print('The shape of y is: ' + str(y.shape))
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)# # 下面画图,随便从原数据取出几个画图,可以注释
# m, n = X.shape
# fig, axes = plt.subplots(8, 8, figsize=(8, 8))
# fig.tight_layout(pad=0.1)
# for i, ax in enumerate(axes.flat):
#     # Select random indices
#     random_index = np.random.randint(m)
#     # Select rows corresponding to the random indices and
#     # 将1*400的数据转换为20*20的图像格式
#     X_random_reshaped = X[random_index].reshape((20, 20)).T
#     # Display the image
#     ax.imshow(X_random_reshaped, cmap='gray')
#     # Display the label above the image
#     ax.set_title(y[random_index, 0])
#     ax.set_axis_off()
# plt.show()# 构建模型,三层模型进行分类,第一层输入25个神经元...
model = Sequential([tf.keras.Input(shape=(400,)),    #specify input size### START CODE HERE ###Dense(100, activation='sigmoid'),Dense(10, activation='sigmoid'),Dense(1, activation='sigmoid')### END CODE HERE ###], name = "my_model"
)
# 打印三层模型的参数
model.summary()
# 模型设定,学习率0.001,因为是分类,使用BinaryCrossentropy损失函数
model.compile(loss=tf.keras.losses.BinaryCrossentropy(),optimizer=tf.keras.optimizers.Adam(0.001),
)
# 开始训练,训练循环20
model.fit(X_train,y_train,epochs=20
)# 绘制测试集的预测结果,绘制64个
fig, axes = plt.subplots(8, 8, figsize=(8, 8))
fig.tight_layout(pad=0.1, rect=[0, 0.03, 1, 0.92])  # [left, bottom, right, top]
for i, ax in enumerate(axes.flat):# Select random indicesrandom_index = np.random.randint(X_test.shape[0])# Select rows corresponding to the random indices and# reshape the imageX_random_reshaped = X_test[random_index].reshape((20, 20)).T# Display the imageax.imshow(X_random_reshaped, cmap='gray')# Predict using the Neural Networkprediction = model.predict(X_test[random_index].reshape(1, 400))if prediction >= 0.5:yhat = 1else:yhat = 0# Display the label above the imageax.set_title(f"{y_test[random_index, 0]},{yhat}")ax.set_axis_off()
fig.suptitle("真实标签, 预测的标签", fontsize=16)
plt.show()# 给出预测的测试集误差
y_pred=model.predict(X_test)
print("测试数据集准确率为:", accuracy_score(y_test, np.round(y_pred)))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/216211.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java--类和对象

目录 面向对象一.类1.类的创建默认初始化2.类的实例化3.注意事项利用类的创建来交换值 二.this1.使用this2.可使用this来调用其他构造方法来简化 三.构造方法3.1概念3.2特性3.3不带参数的构造方法3.4带参数的构造方法当使用自定义的构造方法后,再删除时,…

数据结构-树-二叉树-堆的实现

1.树概念及结构 树是一种 非线性 的数据结构,它是由 n ( n>0 )个有限结点组成一个具有层次关系的集合。 把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的 。 有一个特殊的结点&#xff…

【数据结构 —— 堆的实现(顺序表)】

数据结构 —— 堆的实现(顺序表) 一.堆1.1堆的定义及结构1.1.1.堆的定义1.1.2.堆的性质1.1.3.堆的结构 二.堆的实现2.1.头文件的实现 —— (Heap.h)2.2.源文件的实现 —— (Heap.c)2.2.1.小堆的源文件2.2.2…

leetcode:随机链表的复制

题目描述 题目链接:138. 随机链表的复制 - 力扣(LeetCode) 题目分析 这个题目很长,但是意思其实很简单:就是一个单链表,每个结点多了一个指针random随机指向链表中的任意结点或者NULL,我们血需…

NX二次开发UF_CURVE_ask_curve_struct 函数介绍

文章作者:里海 来源网站:https://blog.csdn.net/WangPaiFeiXingYuan UF_CURVE_ask_curve_struct Defined in: uf_curve.h int UF_CURVE_ask_curve_struct(tag_t curve_id, UF_CURVE_struct_p_t * curve_struct ) overview 概述 Gets the structure p…

大数据技术之数据安全与网络安全——CMS靶场实训

大数据技术之数据安全与网络安全——CMS靶场实训 在当今数字化时代,大数据技术的迅猛发展带来了前所未有的数据增长,同时也催生了对数据安全和网络安全的更为迫切的需求。本篇博客将聚焦于大数据技术背景下的数据安全与网络安全,并通过CMS&a…

3、Qt使用windeploy工具打包可执行文件

新建一个文件夹,把要打包的可执行文件exe拷贝过来 点击输入框,复制一下文件夹路径 点击电脑左下角,找到Qt文件夹, 点击打开 “Qt 5.12.0 for Desktop” (我安装的是Qt 5.12.0版本) 输入“cd bin”&#xff…

【Amazon】安装卸载AWS CLI操作流程(Windows 、Linux系统)

AWS 命令行界面(AWS CLI)是用于管理 AWS 产品的统一工具。只需要下载和配置一个工具,您就可以使用命令行控制多个 AWS 产品并利用脚本来自动执行这些服务。 AWS CLI v2 提供了多项新功能,包括改进的安装程序、新的配置选项&#…

php高级工程师范文模板

以下简历内容以php高级工程师招聘需求为背景,我们制作了1份全面、专业且具有参考价值的简历案例,大家可以灵活借鉴,希望能帮助大家在众多候选人中脱颖而出。 php高级工程师简历在线制作下载:百度幻主简历 求职意向 求职类型&…

FinGPT:金融垂类大模型架构

Overview 动机 架构 底座模型: Llama2Chatglm2 Lora训练 技术路径 自动收集数据并整理 指令微调 舆情分析 搜新闻然后相似搜索 检索增强架构 智能投顾 Hugging face 地址 学术成果及未来方向 参考资料

解决几乎任何机器学习问题 -- 学习笔记(组织机器学习项目)

书籍名:Approaching (Almost) Any Machine Learning Problem-解决几乎任何机器学习问题 此专栏记录学习过程,内容包含对这本书的翻译和理解过程 我们首先来看看文件的结构。对于你正在做的任何项目,都要创建一个新文件夹。在本例中,我 将项目命名为 “p…

数字图像处理(实践篇)二 画出图像中目标的轮廓

目录 一 涉及的OpenCV函数 二 代码 三 效果图 一 涉及的OpenCV函数 contours, hierarchy cv2.findContours(image, mode, method[, contours[, hierarchy[, offset ]]]) image:源图像。mode:轮廓的检索方式。cv2.RETR_EXTERNAL(只检测…