RabbitMQ之发送者(生产者)可靠性

文章目录

  • 前言
  • 一、生产者重试机制
  • 二、生产者确认机制
    • 实现生产者确认
      • (1)定义ReturnCallback
      • (2)定义ConfirmCallback
  • 总结


前言

生产者重试机制、生产者确认机制。


一、生产者重试机制

  • 问题:生产者发送消息时,出现了网络故障,导致与MQ的连接中断。
  • 解决:SpringAMQP提供的消息发送时的重试机制。即:当RabbitTemplate与MQ连接超时后,多次重试。

实现:
需要配置application.yaml文件

spring:rabbitmq:connection-timeout: 1s # 设置MQ的连接超时时间template:retry:enabled: true # 开启超时重试机制initial-interval: 1000ms # 失败后的初始等待时间multiplier: 1 # 失败后下次的等待时长倍数,下次等待时长 = initial-interval * multipliermax-attempts: 3 # 最大重试次数

我们利用命令停掉RabbitMQ服务:

docker stop mq

然后测试发送一条消息,会发现会每隔1秒重试1次,总共重试了3次。消息发送的超时重试机制配置成功了!

注意:
当网络不稳定的时候,利用重试机制可以有效提高消息发送的成功率。不过SpringAMQP提供的重试机制是阻塞式的重试,也就是说多次重试等待的过程中,当前线程是被阻塞的。
如果对于业务性能有要求,建议禁用重试机制。如果一定要使用,请合理配置等待时长和重试次数,当然也可以考虑使用异步线程来执行发送消息的代码。

二、生产者确认机制

  • 一般情况下,只要生产者与MQ之间的网路连接顺畅,基本不会出现发送消息丢失的情况,因此大多数情况下我们无需考虑这种问题。
  • 不过,在少数情况下,也会出现消息发送到MQ之后丢失的现象,比如:
    • MQ内部处理消息的进程发生了异常
    • 生产者发送消息到达MQ后未找到Exchange
    • 生产者发送消息到达MQ的Exchange后,未找到合适的Queue,因此无法路由
  • 针对上述情况,RabbitMQ提供了生产者消息确认机制,包括Publisher Confirm和Publisher Return两种。在开启确认机制的情况下,当生产者发送消息给MQ后,MQ会根据消息处理的情况返回不同的回执。

总结如下:

  • 当消息投递到MQ,但是路由失败时,通过Publisher Return返回异常信息,同时返回ack的确认信息,代表投递成功
  • 临时消息投递到了MQ,并且入队成功,返回ACK,告知投递成功
  • 持久消息投递到了MQ,并且入队完成持久化,返回ACK ,告知投递成功
  • 其它情况都会返回NACK,告知投递失败
  • 其中ack和nack属于Publisher Confirm机制,ack是投递成功;nack是投递失败。而return则属于Publisher Return机制。
    默认两种机制都是关闭状态,需要通过配置文件来开启。

实现生产者确认

发送者的application.yaml配置:

spring:rabbitmq:publisher-confirm-type: correlated # 开启publisher confirm机制,并设置confirm类型publisher-returns: true # 开启publisher return机制

这里publisher-confirm-type有三种模式可选:

  • none:关闭confirm机制
  • simple:同步阻塞等待MQ的回执
  • correlated:MQ异步回调返回回执

一般我们推荐使用correlated,回调机制。

(1)定义ReturnCallback

每个RabbitTemplate只能配置一个ReturnCallback,因此我们可以在配置类中统一设置。我们在发送者定义一个配置类:

import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.core.ReturnedMessage;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.context.annotation.Configuration;@Slf4j
@Configuration
public class MqConfirmConfig implements ApplicationContextAware {@Overridepublic void setApplicationContext(ApplicationContext applicationContext) throws BeansException {// 获取RabbitTemplateRabbitTemplate rabbitTemplate = applicationContext.getBean(RabbitTemplate.class);// 设置ReturnCallback(回调)rabbitTemplate.setReturnsCallback(new RabbitTemplate.ReturnsCallback() {@Overridepublic void returnedMessage(ReturnedMessage returnedMessage) {log.debug("收到消息的return callback, exchange:{},key:{}, msg:{}, code:{},text:{}", returnedMessage.getExchange(),returnedMessage.getRoutingKey(),returnedMessage.getMessage(),returnedMessage.getReplyCode(),returnedMessage.getReplyText());}});}
}

(2)定义ConfirmCallback

由于每个消息发送时的处理逻辑不一定相同,因此ConfirmCallback需要在每次发消息时定义。具体来说,是在调用RabbitTemplate中的convertAndSend方法时,多传递一个参数:
在这里插入图片描述

这里的CorrelationData中包含两个核心的东西:

  • id:消息的唯一标示,MQ对不同的消息的回执以此做判断,避免混淆
  • SettableListenableFuture:回执结果的Future对象

将来MQ的回执就会通过这个Future来返回,我们可以提前给CorrelationData中的Future添加回调函数来处理消息回执:
在这里插入图片描述
发送消息的测试类(添加ConfirmCallback):

@Test
void testPublisherConfirm() {// 1.创建CorrelationDataCorrelationData cd = new CorrelationData();// 2.给Future添加ConfirmCallbackcd.getFuture().addCallback(new ListenableFutureCallback<CorrelationData.Confirm>() {@Overridepublic void onFailure(Throwable ex) {// 2.1.Future发生异常时的处理逻辑,基本不会触发log.error("send message fail", ex);}@Overridepublic void onSuccess(CorrelationData.Confirm result) {// 2.2.Future接收到回执的处理逻辑,参数中的result就是回执内容if(result.isAck()){ // result.isAck(),boolean类型,true代表ack回执,false 代表 nack回执log.debug("发送消息成功,收到 ack!");}else{ // result.getReason(),String类型,返回nack时的异常描述log.error("发送消息失败,收到 nack, reason : {}", result.getReason());}}});// 3.发送消息   RoutingKey是错误的rabbitTemplate.convertAndSend("dragon.direct", "q", "hello", cd);
}

由于传递的RoutingKey是错误的,路由失败后,触发了return callback,同时也收到了ack。当我们修改为正确的RoutingKey以后,就不会触发return callback了,只收到ack。而如果连交换机都是错误的,则只会收到nack。

注意:

开启生产者确认比较消耗MQ性能,一般不建议开启。而且大家思考一下触发确认的几种情况:

  • 路由失败:一般是因为RoutingKey错误导致,往往是编程导致
  • 交换机名称错误:同样是编程错误导致
  • MQ内部故障:这种需要处理,但概率往往较低。因此只有对消息可靠性要求非常高的业务才需要开启,而且仅仅需要开启ConfirmCallback处理nack就可以了。

总结

以上就是全部讲解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/216398.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

记录华为云服务器(Linux 可视化 宝塔面板)-- 安全组篇

文章目录 前言安全组说明安全组的特性安全组的应用场景 进入安全组添加基本规则添加自定义规则如有启发&#xff0c;可点赞收藏哟~ 前言 和windows防火墙类似&#xff0c;安全组是一种虚拟防火墙&#xff0c;具备状态检测和数据包过滤功能&#xff0c;可以对进出云服务器的流量…

golang panic关键词执行原理与代码分析

使用的go版本为 go1.21.2 首先我们写一个简单的panic调度与捕获代码 package mainfunc main() {defer func() {recover()}()panic("panic test") }通过go build -gcflags -S main.go获取到对应的汇编代码 可以看到当我们调度panic时&#xff0c;Go的编译器会将这段…

《尚品甄选》:后台系统——权限管理之角色管理(debug一遍)

文章目录 一、权限管理介绍二、表结构的设计三、查询角色四、添加角色五、修改角色六、删除角色 一、权限管理介绍 在后台管理系统中&#xff0c;权限管理是指为了保证系统操作的安全性和可控性&#xff0c;对用户的操作权限进行限制和管理。简单的来说就是某一个用户可以使用…

2014年全国硕士研究生入学统一考试管理类专业学位联考数学试题——解析版

文章目录 2014 年考研管理类联考数学真题一、问题求解&#xff08;本大题共 15 小题&#xff0c;每小题 3 分&#xff0c;共 45 分&#xff09;下列每题给出 5 个选项中&#xff0c;只有一个是符合要求的&#xff0c;请在答题卡上将所选择的字母涂黑。真题&#xff08;2014-01&…

2024年襄阳中级工程师职称评审条件及要求

想要评审襄阳市中级工程师职称的小伙伴看过来&#xff0c;襄阳人社局对于评审所需的条件及要求如下。秋禾火带大家详细来了解一下 评审范围和人员要求 评审所申报的企业必须是在襄阳市注册登记满一年以上&#xff0c;正常运作的非公有制企业&#xff08;也就是私企&#xff09…

科普:多领域分布式协同仿真

分布式协同仿真是一种在分布式计算环境中进行协同工作的仿真方法。使用该方法进行协同仿真时&#xff0c;仿真任务将被分发到多个计算节点上&#xff0c;并且这些节点可以同时工作以模拟完整的系统行为。分布式协同仿真已被广泛应用于工程、科学和军事领域&#xff0c;以便更好…

Linux中vim的编译链接和gcc

gcc,g,gdb的安装 命令行写gcc,g,gdb根据提示安装:sudo apt install gcc/g/gdb gcc分布编译链接 (1)预编译: gcc -E main.c -o main.i (2)编译: gcc -S main.i -o main.s (3)汇编: gcc -c main.s -o main.o (4)链接 gcc main.o -o main 执行: ./main 或者:全路径/main 编译链…

LeetCode Hot100 108.将有序数组转为二叉搜索树

题目&#xff1a; 给你一个整数数组 nums &#xff0c;其中元素已经按 升序 排列&#xff0c;请你将其转换为一棵 高度平衡 二叉搜索树。 高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。 方法&#xff1a; class Solution {public…

【Mybatis-Plus篇】Mybatis-Plus基本使用

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

基于Python 中创建 Sentinel-2 RGB 合成图像

一、前言 下面的python代码将带您了解如何从原始 Sentinel-2 图像创建 RGB 合成图像的过程。 免费注册后&#xff0c;可以从 Open Access Hub 下载原始图像。 请注意&#xff0c;激活您的帐户可能需要 24 小时&#xff01; 二、准备工作 &#xff08;1&#xff09;导入必要的库…

C#,《小白学程序》第十七课:随机数(Random)第四,移动平均值(Moving Average)的计算方法与代码

1 文本格式 /// <summary> /// 《小白学程序》第十七课&#xff1a;随机数&#xff08;Random&#xff09;第四&#xff0c;移动平均值的计算方法与代码 /// 继续学习数据统计&#xff0c;移动平均值的计算方法 /// 移动平均值就是一定步长内数值的平均值&#xff0c;用…

单片机、ARM、嵌入式开发、Android 底层开发有什么关系?

单片机、ARM、嵌入式开发、Android 底层开发有什么关系&#xff1f; 从我目前的见识来看&#xff1a; 单片机是个系统&#xff08;比如&#xff1a;51、AVR、PLC...&#xff09;&#xff0c;其中包含了去除了输入输出之外的运算器、控制器、存储器&#xff0c;我们用程序可以非…