深度学习第1天:深度学习入门-Keras与典型神经网络结构

☁️主页 Nowl

🔥专栏《机器学习实战》 《机器学习》

📑君子坐而论道,少年起而行之 

文章目录

神经网络

介绍

结构

基本要素

Keras

介绍

导入

定义网络

模型训练

前馈神经网络

特点

常见类型

代码示例

反馈神经网络

特点

作用

常见类型

代码示例

结语


神经网络

介绍

我们知道,深度学习也是机器学习的一个范畴,所以它满足机器学习的基本思想:从数据中拟合出某种规律,只是它的模型结构与经典机器学习的模型不同,且具有特色:它的模型结构像人脑的神经元一样连接,所以我们也把这种结构叫做神经网络

结构

由数个神经元组成一层,整个神经网络由多个层组成,最开始的层叫做输入层,最后的层叫做输出层,输入层与输出层中间的叫做隐藏层,层与层之间互相连接

基本要素

作为机器学习的一种,深度学习当然也有模型性能评估函数损失函数优化方法,神经网络还有一个激活函数的概念,这个激活函数添加到某个神经网络的层上,将输入经过某种函数变化后再输出,常见的激活函数有sigmoid,relu等,不用着急,这些概念我们在之后的系列文章中都会反复提到


Keras

介绍

本系列教程将主要使用Keras库进行讲解,Keras是一个流行的python深度学习库,在许多人工智能竞赛中使用量都居于领先地位

导入

from keras.models import Sequential # 导入Sequential 模型
from keras.layers import Dense # 导入Dense层
import numpy as np

Sequential是一种存储神经网络的模型

Dense是全连接层,每个神经元都与上一层的所有神经元相连

定义网络

model = Sequential()
model.add(Dense(6, input_dim=4, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

这行代码先创建了一个Sequential模型,然后往里面添加了两个全连接层,第一个全连接层的输入是4个神经元,这一层有6个神经元,激活函数是relu,第二个全连接层只有一个神经元,而它的输入由上一层自动判断,也就是6个神经元,激活函数是sigmoid

模型训练

# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])# 训练模型
model.fit(X, y, epochs=10, batch_size=32)

compile初始化了一些基本设置 ,定义了损失函数(loss),定义了优化器(optimizer),定义了评估模型性能的指标(metrics)

fit开始训练模型,epochs定义了训练批次,batch_size设置了每次训练提取的样本数(深度学习训练过程每次一般都是抽取训练集的一个子集,这样做往往可以提高模型训练速度)


前馈神经网络

特点

前一个神经元的输出是后一个神经元的输入,一般结构如下图所示

常见类型

感知机,全连接神经网络,深度神经网络,卷积神经网络

代码示例

from keras.models import Sequential
from keras.layers import Dense
import numpy as np# 生成一些示例数据
X = np.random.random((1000, 20))
y = np.random.randint(2, size=(1000, 1))# 定义简单的前馈神经网络
model = Sequential()
model.add(Dense(64, input_dim=20, activation='relu'))
model.add(Dense(1, activation='sigmoid'))# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])# 训练模型
model.fit(X, y, epochs=10, batch_size=32)

这段代码定义了一个最简单的前馈神经网络,整个模型结构有一个输入层(就是我们输入的数据,这个层没有添加到Sequential中),一个隐藏层,一个输出层 


反馈神经网络

特点

某一个神经元的输入不只与前一个神经元有关,而是可能与之前的所有神经元有关

作用

反馈神经网络通常用来处理序列数据,如语音,文本等,因为这些数据通常跟前后文有关,我们需要反馈神经网络的结构来记忆前后文的关系

常见类型

循环神经网络,长短时记忆网络

代码示例

from keras.models import Sequential
from keras.layers import SimpleRNN, Dense
import numpy as np# 生成一些示例数据
X = np.random.random((1000, 10, 20))  # 1000个样本,每个样本有10个时间步,每个时间步有20个特征
y = np.random.randint(2, size=(1000, 1))# 定义简单的反馈神经网络
model = Sequential()
model.add(SimpleRNN(64, input_shape=(10, 20), activation='relu'))
model.add(Dense(1, activation='sigmoid'))# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])# 训练模型
model.fit(X, y, epochs=10, batch_size=32)

这段代码定义了一个最简单的反馈神经网络,隐藏层为RNN层,设置时间步为10,这意味着数据会在RNN层循环十次后再输入到下一层

结语

对于深度学习,我们主要要了解以下几个方面

  • 神经网络中层与层的连接方式(前馈,反馈)
  • 各种神经网络层的作用(卷积层,池化层)
  • 激活函数(relu)
  • 损失函数
  • 优化方法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/216460.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【matlab程序】matlab利用工具包nctool读取grib2、nc、opendaf、hdf5、hdf4等格式数据

【matlab程序】matlab利用工具包nctool读取grib2、nc、opendaf、hdf5、hdf4等格式数据 引用: B. Schlining, R. Signell, A. Crosby, nctoolbox (2009), Github repository, https://github.com/nctoolbox/nctoolbox Brief summary: nctoolbox is a Matlab toolbox…

远程安全访问JumpServer:使用cpolar内网穿透搭建固定公网地址

文章目录 前言1. 安装Jump server2. 本地访问jump server3. 安装 cpolar内网穿透软件4. 配置Jump server公网访问地址5. 公网远程访问Jump server6. 固定Jump server公网地址 前言 JumpServer 是广受欢迎的开源堡垒机,是符合 4A 规范的专业运维安全审计系统。JumpS…

Ubuntu18.04安装A-Loam保姆级教程

系统环境:Ubuntu18.04.6 LTS 1.A-Loam的安装前要求: 1.1 ROS安装:参考我的另一篇博客 Ubuntu18.04安装ROS-melodic保姆级教程_灬杨三岁灬的博客-CSDN博客还是那句话,有时候加了这行也不好使,我是疯狂试了20次&#…

测试工具JMeter的使用

目录 JMeter的安装配置 测试的性能指标 TPS 响应时长 并发连接 和 并发用户 CPU/内存/磁盘/网络 负载 性能测试实战流程 JMeter JMeter快速上手 GUI模式 运行 HTTP请求默认值 录制网站流量 模拟间隔时间 Cookie管理器 消息数据关联 变量 后置处理器 CSV 数据文…

互联网+智慧工地系统源码

智慧工地以施工现场风险预知和联动预控为目标,将智能AI、传感技术、人像识别、监控、虚拟现实、物联网、5G、大数据、互联网等新一代科技信息技术植入到建筑、机械、人员穿戴设施、场地进出关口等各类设备中,实现工程管理与工程施工现场的整合&#xff0…

【vue_1】console.log没有反应

1、打印不出来?2、警告也会出现问题3、插播:如何使用if-else 语句来处理逻辑 1、打印不出来? 要做一个权限不够的弹出消息框 const authority_message () > {ElMessage({type: warrnings,message: 当前用户的权限不够});console.log(he…

Postman如何使用(二):Postman Collection的创建/使用/导出分享等

一、什么是Postman Collection? Postman Collection是可让您将各个请求分组在一起。 您可以将这些请求组织到文件夹中。中文经常将collection翻译成收藏夹。如果再下文中看到这样的翻译不要觉得意外。Postman Collection会使你的工作效率更上一层楼。Postman Colle…

HarmonyOS应用开发实战—登录页面【ArkTS】

文章目录 本页面实战效果预览图一.HarmonyOS应用开发1.1HarmonyOS 详解1.2 ArkTS详解二.HarmonyOS应用开发实战—登录页面【ArkTS】2.1 ArkTS页面源码2.2 代码解析2.3 心得本页面实战效果预览图 一.HarmonyOS应用开发 1.1HarmonyOS 详解 HarmonyOS(鸿蒙操作系统)是华为公司…

C#,《小白学程序》第五课:队列(Queue)其一,排队的技术与算法

日常生活中常见的排队&#xff0c;软件怎么体现呢&#xff1f; 排队的基本原则是&#xff1a;先到先得&#xff0c;先到先吃&#xff0c;先进先出 1 文本格式 /// <summary> /// 《小白学程序》第五课&#xff1a;队列&#xff08;Queue&#xff09; /// 日常生活中常见…

文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《考虑系统一次频率响应特性的新型电力系统源网荷储协调鲁棒规划》

这篇文章的标题涉及到新型电力系统的源&#xff08;发电源&#xff09;、网&#xff08;电网&#xff09;、荷&#xff08;负荷&#xff0c;即用电需求&#xff09;以及储&#xff08;储能系统&#xff09;的协调鲁棒规划&#xff0c;其中考虑了系统的一次频率响应特性。 让我…

python之pyqt专栏3-QT Designer

从前面两篇文章python之pyqt专栏1-环境搭建与python之pyqt专栏2-项目文件解析&#xff0c;我们对QT Designer有基础的认识。 QT Designer用来创建UI界面&#xff0c;保存的文件是"xxx.ui"文件&#xff0c;"xxx.ui"可以被pyuic转换为"xxx.py",而&…

linux shell操作 - 05 IO 模型

文章目录 流IO模型阻塞IO非阻塞IOIO多路复用异步IO网络IO模型 流 可以进行IO&#xff08;input输入、output输出&#xff09;操作的内核对象&#xff1b;如文件、管道、socket…流的入口是fd (file descriptor)&#xff1b; IO模型 阻塞IO&#xff0c; 一直等待&#xff0c;…