数据结构 | 堆【图解】

数据结构 | 堆【图解】

文章目录

  • 数据结构 | 堆【图解】
    • 堆的概念及结构
    • 堆的实现
      • 堆的初始化
      • 堆的插入【重点】
      • 堆的删除【重点】
      • 取堆顶的数据
      • 堆的数据个数
      • 堆的判空
      • 堆的销毁
    • 全部代码

堆的概念及结构

堆(heap): 一种有特殊用途的数据结构——用来在一组变化频繁(发生增删查改的频率较高)的数据集中查找最值。

堆在物理层面上:表现为一组连续的数组区间:long[] array ;将整个数组看作是堆。

堆在逻辑结构上:一般被视为是一颗完全二叉树。

满足任意结点的值都大于其子树中结点的值,叫做大堆,或者大根堆,或者最大堆;反之,则是小堆,或者小根堆,或者最小堆。当一个堆为大堆时,它的每一棵子树都是大堆。

在这里插入图片描述

  • 堆一般是数组数据看做一颗完全二叉树
    • 小堆要求:任意一个父亲<=孩子
    • 大堆要求:任意一个父亲>=孩子

这里是没有中堆的!

堆的实现

Heap.h

  • 需要实现堆的函数
#pragma once#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>typedef int HPDataType;typedef struct Heap
{HPDataType* a;int size;int capacity;
}Heap;// 堆的构建
void HeapInit(Heap* hp);
// 堆的插入
void HeapPush(Heap* hp, HPDataType x);
// 堆的删除
void HeapPop(Heap* hp);
// 取堆顶的数据
HPDataType HeapTop(Heap* hp);
// 堆的数据个数
int HeapSize(Heap* hp);
// 堆的判空
bool HeapEmpty(Heap* hp);
// 堆的销毁
void HeapDestory(Heap* hp);

  • 接下来我们就开始实现堆~~

堆的初始化

  • 这里直接初始化,不多介绍
void HeapInit(Heap* hp)
{assert(hp);hp->a = NULL;hp->capacity = hp->size = 0;
}

堆的插入【重点】

  • 检查空间是否满了,满了就扩容
  • 然后将值插入到最后
  • 最后向上调整

向上调整算法,依次pk

在这里插入图片描述

  • 这里的sizesize-1,而不是size,因为是放完数据后size++了一下,然后要取size-1的位置
  • 如果孩子节点小于父亲节点就交换
  • 然后再将父亲节点给了孩子节点,再进行(-1)/2
  • 如果大于等于父亲就跳出循环
  • 跳出的条件是child > 0
  • 这里的向上时间复杂度是O(logN)
//交换
void Swap(int* p1, int* p2)
{HPDataType tmp = *p1;*p1 = *p2;*p2 = tmp;
}
//向上调整
void AjustUp(HPDataType* a, HPDataType child)
{HPDataType parent = (child - 1) / 2;while (child > 0){if (a[child] < a[parent]){Swap(&a[child], &a[parent]);child = parent;parent = (parent - 1) / 2;}else{break;}}
}// 堆的插入
void HeapPush(Heap* hp, HPDataType x)
{assert(hp);if (hp->capacity == hp->size){HPDataType newcapacity = hp->capacity == 0 ? 4 : hp->capacity * 2;HPDataType* tmp = (HPDataType*)realloc(hp->a, sizeof(HPDataType) * newcapacity);if (tmp == NULL){perror("realloc fail\n");exit(-1);}hp->a = tmp;hp->capacity = newcapacity;}hp->a[hp->size] = x;hp->size++;AjustUp(hp->a, hp->size - 1);
}
  • 我们测试一下~~
int main()
{Heap hp;int a[] = { 27,15,19,18,28,34,65,49,25,37 };HeapInit(&hp);int sz = sizeof(a) / sizeof(a[0]);for (int i = 0; i < sz; i++){HeapPush(&hp, a[i]);}return 0;
}

在这里插入图片描述

堆的删除【重点】

  • 堆的删除是堆顶上的数据,而不是删除根节点,删除最下面的那个数据是没有意义的~~

  • 删除后要进行调整

步骤一:

交换

在这里插入图片描述

步骤二:

向下调整算法

在这里插入图片描述

这里的向下时间复杂度是O(logN),和向上一样,调整高度次

//向下调整
void AdjustDown(int* a, int size, int parent)
{//假设左孩子小,假设错了就更新int child = parent * 2 + 1;while (child < size){if (a[child + 1] < a[child]){++child;}if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}
// 堆的删除
void HeapPop(Heap* hp)
{assert(hp);assert(hp->size > 0);//首尾交换Swap(&hp->a[0], &hp->a[hp->size - 1]);hp->size--;//从根向下调整AdjustDown(hp->a, hp->size, 0);
}

取堆顶的数据

  • 这里直接取数组第一个元素就可以了
HPDataType HeapTop(Heap* hp)
{assert(hp);assert(hp->size > 0);return hp->a[0];
}

堆的数据个数

  • 这里也一样,取size
int HeapSize(Heap* hp)
{assert(hp);return hp->size;
}

堆的判空

  • 判断size是否为0
bool HeapEmpty(Heap* hp)
{assert(hp);return hp->size == 0;
}

堆的销毁

  • 销毁也不多说了,很简单
void HeapDestory(Heap* hp)
{assert(hp);free(hp->a);hp->capacity = hp->size = 0;
}

全部代码

//小堆算法
// 堆的构建
void HeapInit(Heap* hp)
{assert(hp);hp->a = NULL;hp->capacity = hp->size = 0;
}//交换
void Swap(int* p1, int* p2)
{HPDataType tmp = *p1;*p1 = *p2;*p2 = tmp;
}//向上调整
void AdjustUp(HPDataType* a, HPDataType child)
{HPDataType parent = (child - 1) / 2;while (child > 0){if (a[child] < a[parent]){Swap(&a[child], &a[parent]);child = parent;parent = (parent - 1) / 2;}else{break;}}
}// 堆的插入
void HeapPush(Heap* hp, HPDataType x)
{assert(hp);if (hp->capacity == hp->size){int newcapacity = hp->capacity == 0 ? 4 : hp->capacity * 2;HPDataType* tmp = (HPDataType*)realloc(hp->a, sizeof(HPDataType) * newcapacity);if (tmp == NULL){perror("realloc fail\n");exit(-1);}hp->a = tmp;hp->capacity = newcapacity;}hp->a[hp->size] = x;hp->size++;AdjustUp(hp->a, hp->size - 1);
}//向下调整
void AdjustDown(int* a, int size, int parent)
{//假设左孩子小,假设错了就更新int child = parent * 2 + 1;while (child < size){if (child + 1 < size && a[child + 1] < a[child]){++child;}if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}
// 堆的删除
void HeapPop(Heap* hp)
{assert(hp);assert(hp->size > 0);//首尾交换Swap(&hp->a[0], &hp->a[hp->size - 1]);hp->size--;//从根向下调整AdjustDown(hp->a, hp->size, 0);
}
// 取堆顶的数据
HPDataType HeapTop(Heap* hp)
{assert(hp);assert(hp->size > 0);return hp->a[0];
}
// 堆的数据个数
int HeapSize(Heap* hp)
{assert(hp);return hp->size;
}
// 堆的判空
bool HeapEmpty(Heap* hp)
{assert(hp);return hp->size == 0;
}// 堆的销毁
void HeapDestory(Heap* hp)
{assert(hp);free(hp->a);hp->capacity = hp->size = 0;
}

以上是小堆的算法,大堆也是一样的,只需要改几个符号就可以了~~

堆的介绍就到这里结束了,感谢收看~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/216734.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

无人智能柜:经营成本低,运维智能化

在现代商业领域中&#xff0c;无人智能柜正逐渐崭露头角&#xff0c;成为一种具有前景的商业模式。其独特之处在于经营成本的低廉性和运维过程的智能化。相较于传统的便利店等实体店铺&#xff0c;无人智能柜在运营过程中不仅能够降低成本&#xff0c;还能够实现高效的运维管理…

【腾讯云云上实验室】向量数据库+LangChain+LLM搭建智慧辅导系统实践

目录 一、搭建智慧辅导系统——向量数据库实践指南1.1、创建向量数据库并新建集合1.2、使用 TKE 快速部署 ChatGLM1.3、部署 LangChain PyPDFVectorDB等组件1.4、配置知识库语料1.5、基于 VectorDB LLM 的智能辅导助手 二、LLM时代的次世代引擎——向量数据库2.1、向量数据库L…

【多线程】-- 02 线程创建之实现Runnable初识多线程并发问题

多线程 2 线程创建 2.2 实现Runnable接口 【学习提示】查看JDK帮助文档 定义MyRunnable类实现Runnable接口实现run()方法&#xff0c;编写线程执行体创建线程对象&#xff0c;调用start()方法启动线程 package com.duo.demo01;//创建线程方式二&#xff1a;实现Runnable接…

Mac开发环境——MacOSX安装与配置Anaconda与PyCharm详细流程

一、安装与使用Anaconda 1.简介 Anaconda 是一个用于数据科学、机器学习和科学计算的开源发行版和包管理器。有许多可用于数据处理、分析和建模的工具和库&#xff0c;并提供了一个方便的环境管理系统。Anaconda 包含了 Python 解释器和许多常用的 Python 包&#xff0c;以及…

Windows环境搭建

Windows环境搭建 一. jdk1.8安装1. 资源链接2. 安装3. 配置环境变量 一. jdk1.8安装 1. 资源链接 资源链接 提取码&#xff1a;tfms 2. 安装 1.双击下载好的JDK,点击下一步。 2.修改默认目录&#xff08;可不修改&#xff09;&#xff0c;点击下一步&#xff0c; 3. 点击下…

医保线上购药系统:引领医疗新潮流

在科技的驱动下&#xff0c;医疗健康服务正经历一场数字化的革新。医保线上购药系统&#xff0c;不仅是一种医疗服务的新选择&#xff0c;更是技术代码为我们的健康管理带来的全新可能。本文将通过一些简单的技术代码示例&#xff0c;深入解析医保线上购药系统的工作原理和优势…

CleanMyMacX4.14.5macOS电脑系统免费清理工具

CleanMyMac X是一款专业的Mac清理软件&#xff0c;可智能清理mac磁盘垃圾和多余语言安装包&#xff0c;快速释放电脑内存&#xff0c;轻松管理和升级Mac上的应用。同时CleanMyMac X可以强力卸载恶意软件&#xff0c;修复系统漏洞&#xff0c;一键扫描和优化Mac系统&#xff0c;…

Altium Designer学习笔记13

0603电容封装的画法&#xff1a; 再画下三极管SOT-23的三极管的封装图&#xff1a; 画出三极管的封装图&#xff1a; 在画图的过程中&#xff0c;遇到了一个问题&#xff0c;画闭环线路的时候&#xff0c;就会被自动删除&#xff0c;查出是这个地方的配置需要进行修改。 那这个…

ConcurrentHashMap的数据结构+以及各个版本之间的区别

ConcurrentHashMap 1.7与1.8的区别 1、锁结构不同 2、put的流程不同 3、size的计算方式不同(1.8使用的使用basecell[]计算&#xff0c;有点类似于LongAdder&#xff0c;1.7使用三级通缉判断是否一样&#xff0c;不一样通过分段式加锁再求和) 4、数据结构不同&#xff0c;1.6 Re…

FANUC机器人到达某个点位时,为什么不显示@符号?

FANUC机器人到达某个点位时,为什么不显示@符号? 该功能由变量$MNDSP_POSCF = 0(不显示)/1(显示)/2(光标移动该行显示) 控制,该变量设置为不同的值,则启用对应的功能。 如下图所示,为该变量设置不同的值时的对比, 其他常用的系统变量可参考以下内容: 在R寄存器指定速度…

HCIA-RS基础-静态路由协议

摘要&#xff1a;静态路由是一种在网络中广泛应用的路由选择方案&#xff0c;它以其简单的配置和低开销而备受青睐。本文将介绍静态路由的配置方法、默认路由的设置、路由的负载分担和备份策略。通过学习本文&#xff0c;希望可以你能够掌握静态路由的基本概念和在华为模拟器中…

rhino 取消画线自带控制点方法~

很多朋友反映不知道 rhino 怎么取消画线自带控制点&#xff1f;下面就这个问题&#xff0c;一起来看看吧&#xff01; 软件地址&#xff1a;Rhino 8 for Mac中文下载 rhino 怎么取消画线自带控制点&#xff1f; 在Rhino中选择“线条”工具&#xff0c;或者使用快捷键“L”来…