OpenCV- 学习笔记(Python)图像处理基础

本专栏:主要记录OpenCV(Python)学习笔记

OpenCV 图像处理基础

灰度图

import cv2 #opencv读取的格式是BGR
import numpy as np
import matplotlib.pyplot as plt#Matplotlib是RGB
%matplotlib inline 
​
img=cv2.imread('cat.jpg')
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
img_gray.shape

cat.jpg
图1:cat.jpg

cv2.imshow("img_gray", img_gray)
cv2.waitKey(0)    
cv2.destroyAllWindows() 
# [cv2.destroyAllWindows() ](https://blog.csdn.net/qq_29901385/article/details/133396468)

HSV

  • H - 色调(主波长)。
  • S - 饱和度(纯度/颜色的阴影)。
  • V值(强度)
hsv=cv2.cvtColor(img,cv2.COLOR_BGR2HSV)cv2.imshow("hsv", hsv)
cv2.waitKey(0)    
cv2.destroyAllWindows()

图像阈值
ret, dst = cv2.threshold(src, thresh, maxval, type)
src:输入图,只能输入单通道图像,通常来说为灰度图
dst: 输出图
thresh: 阈值
maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
type:二值化操作的类型,包含以下5种类型:

  cv2.THRESH_BINARY           超过阈值部分取maxval(最大值),否则取0cv2.THRESH_BINARY_INV       THRESH_BINARY的反转cv2.THRESH_TRUNC            大于阈值部分设为阈值,否则不变cv2.THRESH_TOZERO           大于阈值部分不改变,否则设为0cv2.THRESH_TOZERO_INV       THRESH_TOZERO的反转
ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]for i in range(6):plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

图像平滑

img = cv2.imread('lenaNoise.png')cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

均值滤波

# 均值滤波
# 简单的平均卷积操作
blur = cv2.blur(img, (3, 3))cv2.imshow('blur', blur)
cv2.waitKey(0)
cv2.destroyAllWindows()

方框滤波

# 方框滤波
# 基本和均值一样,可以选择归一化
box = cv2.boxFilter(img,-1,(3,3), normalize=True)  cv2.imshow('box', box)
cv2.waitKey(0)
cv2.destroyAllWindows()

方框滤波 normalize=False

# 方框滤波
# 基本和均值一样,可以选择归一化,容易越界
box = cv2.boxFilter(img,-1,(3,3), normalize=False)  cv2.imshow('box', box)
cv2.waitKey(0)
cv2.destroyAllWindows()

高斯滤波

# 高斯滤波
# 高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的
aussian = cv2.GaussianBlur(img, (5, 5), 1)  cv2.imshow('aussian', aussian)
cv2.waitKey(0)
cv2.destroyAllWindows()

中值滤波

# 中值滤波
# 相当于用中值代替
median = cv2.medianBlur(img, 5)  # 中值滤波cv2.imshow('median', median)
cv2.waitKey(0)
cv2.destroyAllWindows()

展示所有的

# 展示所有的
res = np.hstack((blur,aussian,median))
#print (res)
cv2.imshow('median vs average', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果:均值滤波,高斯滤波,中值滤波,方框滤波:
在这里插入图片描述

形态学-腐蚀操作

读取图像

img = cv2.imread('dige.png')cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

腐蚀操作

kernel = np.ones((3,3),np.uint8) 
erosion = cv2.erode(img,kernel,iterations = 1)cv2.imshow('erosion', erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()

设置不同的参数对比

pie = cv2.imread('pie.png')cv2.imshow('pie', pie)
cv2.waitKey(0)
cv2.destroyAllWindows()kernel = np.ones((30,30),np.uint8) 
erosion_1 = cv2.erode(pie,kernel,iterations = 1)
erosion_2 = cv2.erode(pie,kernel,iterations = 2)
erosion_3 = cv2.erode(pie,kernel,iterations = 3)
res = np.hstack((erosion_1,erosion_2,erosion_3))
cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果显示: pie,erosion_1,erosion_2,erosion_3
在这里插入图片描述

形态学-膨胀操作

img = cv2.imread('dige.png')
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
kernel = np.ones((3,3),np.uint8) 
dige_erosion = cv2.erode(img,kernel,iterations = 1)cv2.imshow('erosion', erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()
kernel = np.ones((3,3),np.uint8) 
dige_dilate = cv2.dilate(dige_erosion,kernel,iterations = 1)cv2.imshow('dilate', dige_dilate)
cv2.waitKey(0)
cv2.destroyAllWindows()
pie = cv2.imread('pie.png')kernel = np.ones((30,30),np.uint8) 
dilate_1 = cv2.dilate(pie,kernel,iterations = 1)
dilate_2 = cv2.dilate(pie,kernel,iterations = 2)
dilate_3 = cv2.dilate(pie,kernel,iterations = 3)
res = np.hstack((dilate_1,dilate_2,dilate_3))
cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果显示:dilate_1,dilate_2,dilate_3
在这里插入图片描述

开运算与闭运算

先腐蚀,再膨胀

# 开:先腐蚀,再膨胀
img = cv2.imread('dige.png')kernel = np.ones((5,5),np.uint8) 
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)cv2.imshow('opening', opening)
cv2.waitKey(0)
cv2.destroyAllWindows()

先膨胀,再腐蚀

# 闭:先膨胀,再腐蚀
img = cv2.imread('dige.png')kernel = np.ones((5,5),np.uint8) 
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)cv2.imshow('closing', closing)
cv2.waitKey(0)
cv2.destroyAllWindows()

梯度运算

梯度=膨胀-腐蚀

# 梯度=膨胀-腐蚀
pie = cv2.imread('pie.png')
kernel = np.ones((7,7),np.uint8) 
dilate = cv2.dilate(pie,kernel,iterations = 5)
erosion = cv2.erode(pie,kernel,iterations = 5)res = np.hstack((dilate,erosion))cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()
gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernel)cv2.imshow('gradient', gradient)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果显示:dilate,erosion,gradient
在这里插入图片描述

礼帽与黑帽

  • 礼帽 = 原始输入-开运算结果
  • 黑帽 = 闭运算-原始输入
#礼帽
img = cv2.imread('dige.png')
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)
cv2.imshow('tophat', tophat)
cv2.waitKey(0)
cv2.destroyAllWindows()
#黑帽
img = cv2.imread('dige.png')
blackhat  = cv2.morphologyEx(img,cv2.MORPH_BLACKHAT, kernel)
cv2.imshow('blackhat ', blackhat )
cv2.waitKey(0)
cv2.destroyAllWindows()

结果显示:礼帽与黑帽
在这里插入图片描述

图像梯度-Sobel算子

img = cv2.imread('pie.png',cv2.IMREAD_GRAYSCALE)
cv2.imshow("img",img)
cv2.waitKey()
cv2.destroyAllWindows()

dst = cv2.Sobel(src, ddepth, dx, dy, ksize)

  • ddepth:图像的深度
  • dx和dy分别表示水平和竖直方向
  • ksize是Sobel算子的大小
def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows()
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
cv_show(sobelx,'sobelx')

白到黑是正数,黑到白就是负数了,所有的负数会被截断成0,所以要取绝对值

sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)
cv_show(sobelx,'sobelx')
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobely = cv2.convertScaleAbs(sobely)  
cv_show(sobely,'sobely')

分别计算x和y,再求和

sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0)
cv_show(sobelxy,'sobelxy')

不建议直接计算

sobelxy = cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)
sobelxy = cv2.convertScaleAbs(sobelxy) 
cv_show(sobelxy,'sobelxy')
img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
cv_show(img,'img')
img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobely = cv2.convertScaleAbs(sobely)
sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0)
cv_show(sobelxy,'sobelxy')

img = cv2.imread(‘lena.jpg’,cv2.IMREAD_GRAYSCALE)
sobelxy=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)
sobelxy = cv2.convertScaleAbs(sobelxy)
cv_show(sobelxy,‘sobelxy’)
结果显示:
在这里插入图片描述

图像梯度-Scharr算子 & 图像梯度-laplacian算子

   #不同算子的差异img = cv2.imread('MyCode/OpenCV/images/lena.jpg',cv2.IMREAD_GRAYSCALE)# 图像梯度-Sobel算子sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)sobelx = cv2.convertScaleAbs(sobelx)   sobely = cv2.convertScaleAbs(sobely)  sobelxy =  cv2.addWeighted(sobelx,0.5,sobely,0.5,0)  # 图像梯度-Scharr算子scharrx = cv2.Scharr(img,cv2.CV_64F,1,0)scharry = cv2.Scharr(img,cv2.CV_64F,0,1)scharrx = cv2.convertScaleAbs(scharrx)   scharry = cv2.convertScaleAbs(scharry)  scharrxy =  cv2.addWeighted(scharrx,0.5,scharry,0.5,0) # 图像梯度-laplacian算子laplacian = cv2.Laplacian(img,cv2.CV_64F)laplacian = cv2.convertScaleAbs(laplacian)   res = np.hstack((sobelxy,scharrxy,laplacian))cv2.imshow('res', res)cv2.waitKey(0)cv2.destroyAllWindows()

结果显示:图像梯度-Sobel算子,图像梯度-Scharr算子,图像梯度-laplacian算子
在这里插入图片描述

Canny边缘检测

  • 使用高斯滤波器,以平滑图像,滤除噪声。
  • 计算图像中每个像素点的梯度强度和方向。
  • 应用非极大值(Non-Maximum Suppression)抑制,以消除边缘检测带来的杂散响应。
  • 应用双阈值(Double-Threshold)检测来确定真实的和潜在的边缘。
  • 通过抑制孤立的弱边缘最终完成边缘检测。
img=cv2.imread("lena.jpg",cv2.IMREAD_GRAYSCALE)v1=cv2.Canny(img,80,150)
v2=cv2.Canny(img,50,100)res = np.hstack((v1,v2))
cv_show(res,'res')
img=cv2.imread("car.png",cv2.IMREAD_GRAYSCALE)v1=cv2.Canny(img,120,250)
v2=cv2.Canny(img,50,100)res = np.hstack((v1,v2))
cv_show(res,'res')

在这里插入图片描述

图像金字塔

  • 高斯金字塔
  • 拉普拉斯金字塔
img=cv2.imread("AM.png")
cv_show(img,'img')
print (img.shape)

高斯金字塔:向上采样方法(放大)

up=cv2.pyrUp(img)
cv_show(up,'up')
print (up.shape)

高斯金字塔:向下采样方法(缩小)

down=cv2.pyrDown(img)
cv_show(down,'down')
print (down.shape)
up2=cv2.pyrUp(up)
cv_show(up2,'up2')
print (up2.shape)
up=cv2.pyrUp(img)
up_down=cv2.pyrDown(up)
cv_show(up_down,'up_down')
cv_show(np.hstack((img,up_down)),'up_down')
up=cv2.pyrUp(img)
up_down=cv2.pyrDown(up)
cv_show(img-up_down,'img-up_down')

拉普拉斯金字塔¶

down=cv2.pyrDown(img)
down_up=cv2.pyrUp(down)
l_1=img-down_up
cv_show(l_1,'l_1')

图像轮廓

cv2.findContours(img,mode,method) mode:轮廓检索模式

  • RETR_EXTERNAL :只检索最外面的轮廓;
  • RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中;
  • RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界;
  • RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次;

method:轮廓逼近方法

  • CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)。
  • CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分。

为了更高的准确率,使用二值图像。

img = cv2.imread('contours.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
cv_show(thresh,'thresh')
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

绘制轮廓

cv_show(img,'img')
#传入绘制图像,轮廓,轮廓索引,颜色模式,线条厚度
# 注意需要copy,要不原图会变。。。
draw_img = img.copy()
res = cv2.drawContours(draw_img, contours, -1, (0, 0, 255), 2)
cv_show(res,'res')
draw_img = img.copy()
res = cv2.drawContours(draw_img, contours, 0, (0, 0, 255), 2)
cv_show(res,'res')

轮廓特征

cnt = contours[0]
#面积
cv2.contourArea(cnt)
#周长,True表示闭合的
cv2.arcLength(cnt,True)

轮廓近似

img = cv2.imread('contours2.png')gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]draw_img = img.copy()
res = cv2.drawContours(draw_img, [cnt], -1, (0, 0, 255), 2)
cv_show(res,'res')
epsilon = 0.15*cv2.arcLength(cnt,True) 
approx = cv2.approxPolyDP(cnt,epsilon,True)draw_img = img.copy()
res = cv2.drawContours(draw_img, [approx], -1, (0, 0, 255), 2)
cv_show(res,'res')

边界矩形

img = cv2.imread('contours.png')gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]x,y,w,h = cv2.boundingRect(cnt)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv_show(img,'img')
area = cv2.contourArea(cnt)
x, y, w, h = cv2.boundingRect(cnt)
rect_area = w * h
extent = float(area) / rect_area
print ('轮廓面积与边界矩形比',extent)

外接圆

(x,y),radius = cv2.minEnclosingCircle(cnt) 
center = (int(x),int(y)) 
radius = int(radius) 
img = cv2.circle(img,center,radius,(0,255,0),2)
cv_show(img,'img')

傅里叶变换

我们生活在时间的世界中,早上7:00起来吃早饭,8:00去挤地铁,9:00开始上班。。。以时间为参照就是时域分析。

但是在频域中一切都是静止的!

https://zhuanlan.zhihu.com/p/19763358

傅里叶变换的作用

  • 高频:变化剧烈的灰度分量,例如边界
  • 低频:变化缓慢的灰度分量,例如一片大海

滤波

  • 低通滤波器:只保留低频,会使得图像模糊
  • 高通滤波器:只保留高频,会使得图像细节增强

opencv中主要就是cv2.dft()和cv2.idft(),输入图像需要先转换成np.float32
格式,得到的结果中频率为0的部分会在左上角,通常要转换到中心位置,通过shift变换

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('lena.jpg',0)img_float32 = np.float32(img)dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()
import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('lena.jpg',0)img_float32 = np.float32(img)dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)     # 中心位置# 低通滤波
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])plt.show()                

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/217010.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode—94.二叉树的中序遍历【简单】

2023每日刷题(四十) Leetcode—94.二叉树的中序遍历 C语言实现代码 /*** Definition for a binary tree node.* struct TreeNode {* int val;* struct TreeNode *left;* struct TreeNode *right;* };*/ /*** Note: The returned array mus…

FFmpeg零基础学习(一)——初步介绍与环境搭建

目录 前言正文一、开发环境二、搭建环境三、测试代码End、遇到的问题2、Qt 在线安装容易报错,断开问题1、在线安装QMaintainTool很慢2、Qt5.15 无法调试FFmpeg 参考 前言 FFmpeg是一个开源的跨平台多媒体处理框架,它包含了一组用于处理音频、视频、字幕…

Python函数式编程:让你的代码更优雅更简洁

概要 函数式编程(Functional Programming)是一种编程范式,它将计算视为函数的求值,并且避免使用可变状态和循环。 函数式编程强调的是函数的计算,而不是它的副作用。 在函数式编程中,函数是第一类公民&a…

路由器DHCP分配IP地址规则

路由器DHCP分配IP地址的机制: 先设置一个IP地址池,假设是192.168.1.100-192.168.1.199一共100个。 来一个请求,看一下是不是以前请求过的地址,如果是,还是返回以前给过的IP,然后将到期时间(有些路由器默认…

XShell新建会话指南

XShell新建会话 我们先登录我们的xshell,连接我们的远程服务器 为了方便我们以后的使用,我们可以新建一个会话记住用户 新建好后,我们可以打开这个会话 我们选择记住用户名 然后继续输密码就可以了 之后我们每次打开xshell的时候&#xff0c…

机器学习与因果推断的高级实践 | 数学建模

文章目录 因果推断因果推断的前世今生(1)潜在结果框架(Potential Outcome Framework)(2)结构因果模型(Structual Causal Model,SCM) 身处人工智能爆发式增长时代的机器学…

计算机编程零基础编程学什么语言,中文编程工具构件简介软件下载

计算机编程零基础编程学什么语言,中文编程工具构件简介软件下载 给大家分享一款中文编程工具,零基础轻松学编程,不需英语基础,编程工具可下载。 这款工具不但可以连接部分硬件,而且可以开发大型的软件,象如…

哨兵1号回波数据(L0级)包格式解析与成像参数提取

坑爹的格式,具体有多坑往下看就知道了。matlab代码在文末。 先上首字母缩写: 再来回波数据包的格式图 1. 数据包格式 众所周知,解包的第一步是找帧头和帧长,找到第4~5字节,帧长码为“0x3761”,转十进制为14777,然而实际第一帧整帧的长度是14184。。。你要是加6我还能…

网络和Linux网络_5(应用层)HTTP协议(方法+报头+状态码)

目录 1. HTTP协议介绍 1.1 URL介绍 1.2 urlencode和urldecode 1.3 HTTP协议格式 1.4 HTTP的方法和报头和状态码 2. 代码验证HTTP协议格式 HttpServer.hpp 2.2 html正式测试 Util.hpp index.html 2.3 再看HTTP方法和报头和状态码 2.3.1 方法_GET和POST等 2.3.2 报头…

京东家用电器商品电子说明书在哪里能找到怎么查看产品电子说明书?草柴返利APP如何查询领取京东优惠券拿京东购物返利?

京东商品电子说明书是一种便捷、高效的说明工具,为消费者了解和使用商品提供了重要帮助。京东商品电子说明书是一种以电子文档、图文、视频的形式提供的商品使用说明书。它通常由商家上传至京东平台,以供消费者在购买商品后下载查看。与传统的纸质说明书…

frp V0.52.3 搭建

下载 https://github.com/fatedier/frp/releases/ 此版本暂时没有windows的,想在windows使用请下载v0.52.2 简易搭建 frps.toml的配置文件,以下12000、8500需要在云服务器中的防火墙中开放tcp # bindPort为frps和frpc通信的端口,需要在防…

Linux的gcc,gdb基础

执行详解: 1)如何执行 路径可执行文件名 或者 路径可执行文件名 & (将进程放到后台执行); 可以把可执行文件放到 /usr/bin 就可以省略路径了; 思考:为什么? ps :/usr/bin ps,ls,pwd (先了解,后期写项目就知道为什么了) 2)两步执行与一步执行 a.可以三步合为一步,即…