bop数据合并到COCO

bop数据合并到COCO

  • JSON转TXT
  • 重命名
  • txt文件中类别信息的转换

JSON转TXT


import json
import os,globcategories = [{"id": 12,"name": "OREO","supercategory": "icbin"},{"id": 16,"name": "Paper Cup","supercategory": "icbin"},{"id": 4,"name": "School Glue","supercategory": "icbin"},{"id": 7,"name": "Straw Cups","supercategory": "icbin"},{"id": 9,"name": "Highland","supercategory": "icbin"},{"id": 10,"name": "Soueakair","supercategory": "icbin"},{"id": 2,"name": "Cheez-it","supercategory": "icbin"},{"id": 1,"name": "Copper Plus","supercategory": "icbin"},{"id": 8,"name": "Stir Stick","supercategory": "icbin"},{"id": 14,"name": "Stanley","supercategory": "icbin"},{"id": 3,"name": "Crayola","supercategory": "icbin"},{"id": 13,"name": "Mirado","supercategory": "icbin"},{"id": 11,"name": "Munchkin","supercategory": "icbin"},{"id": 6,"name": "Greenies","supercategory": "icbin"},{"id": 5,"name": "White Board Cake","supercategory": "icbin"},{"id": 15,"name": "Main Arm","supercategory": "icbin"}]def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = box[0] + box[2] / 2.0y = box[1] + box[3] / 2.0w = box[2]h = box[3]x = x * dww = w * dwy = y * dhh = h * dhreturn (x, y, w, h)def to_yolo(data_path):json_path=data_path+'/scene_gt_coco.json' save_path = data_path+ '/labels/'json_file =   json_path # COCO Object Instance 类型的标注ana_txt_save_path = save_path  # 保存的路径data = json.load(open(json_file, 'r'))if not os.path.exists(ana_txt_save_path):os.makedirs(ana_txt_save_path)id_map = {} # coco数据集的id不连续!重新映射一下再输出!print(data['categories'])# # categories = sorted(data['categories'], key=lambda x: x['id'])for i, category in enumerate(categories): # id_map[category['id']] = int(category['id'])id_map[category['id']] = i# 通过事先建表来降低时间复杂度max_id = 0for img in data['images']:max_id = max(max_id, img['id'])# 注意这里不能写作 [[]]*(max_id+1),否则列表内的空列表共享地址img_ann_dict = [[] for i in range(max_id+1)] for i, ann in enumerate(data['annotations']):img_ann_dict[ann['image_id']].append(i)for img in data['images']:filename = img["file_name"]img_width = img["width"]img_height = img["height"]img_id = img["id"]head, tail = os.path.splitext(filename)ana_txt_name = head.split('/')[-1] + ".txt"  # 对应的txt名字,与jpg一致f_txt = open(os.path.join(ana_txt_save_path, ana_txt_name), 'w')'''for ann in data['annotations']:if ann['image_id'] == img_id:box = convert((img_width, img_height), ann["bbox"])f_txt.write("%s %s %s %s %s\n" % (id_map[ann["category_id"]], box[0], box[1], box[2], box[3]))'''# 这里可以直接查表而无需重复遍历for ann_id in img_ann_dict[img_id]:ann = data['annotations'][ann_id]box = convert((img_width, img_height), ann["bbox"])f_txt.write("%s %s %s %s %s\n" % (id_map[ann["category_id"]], box[0], box[1], box[2], box[3]))f_txt.close()print(f'==> coco to yolo images:{len(data["images"])}, save path: {save_path}')def train_val_test(data_path):sets = ['train','val','test']#生成txt的文件名称image_ids = glob.glob(os.path.join(data_path, 'images', '*.jpg'))train_ratio = 0.7  # 训练集比例val_ratio = 0.2  # 验证集比例test_ratio = 0.1  # 测试集比例train_size = int(len(image_ids) * train_ratio)val_size = int(len(image_ids) * val_ratio)test_size = len(image_ids) - train_size - val_sizedata  = [image_ids[:train_size], image_ids[train_size:train_size + val_size], image_ids[train_size + val_size:]]for i, image_set in enumerate(sets):image_ids = data[i]list_file = open(data_path+'/%s.txt' % (image_set), 'w')for image_id in image_ids:image_id = image_id.replace('/rgb','/images')list_file.write(image_id + "\n")# convert_annotation(image_id)# 关闭文件list_file.close()print(f'==> train image: {train_size}')print(f'==> valid image: {val_size}')print(f'==> test  image: {test_size}')if __name__ == '__main__':data_path = 'H:/Dataset/COCO/train_pbr/000002'to_yolo(data_path)train_val_test(data_path)# print([cat['name'] for cat in categories])

在这里插入图片描述

重命名

以00000061*开头

在这里插入图片描述

txt文件中类别信息的转换

加79(从0开始,80类的COCO)

import codecs
import ospath = 'H:/Dataset/COCO/train_pbr/000002/labelNew/'  # 标签文件train路径
m = os.listdir(path)
# 读取路径下的txt文件
for n in range(0, len(m)):t = codecs.open('H:/Dataset/COCO/train_pbr/000002/labelNew/' + m[n], mode='r', encoding='utf-8')line = t.readline()  # 以行的形式进行读取文件list1 = []while line:a = line.split()list1.append(a)line = t.readline()t.close()lt = open('H:/Dataset/COCO/train_pbr/000002/labelNew/' + m[n], "w")for num in range(0, len(list1)):list1[num][0] = str(int(list1[num][0])+79)  # 第一列为0时,将0改为1lt.writelines(' '.join(list1[num]) + '\n')  # 每个元素以空格间隔,一行元素写完并换行lt.close()print(m[n] + " 修改完成")

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/217258.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JAVA序列化和反序列化

JAVA序列化和反序列化 文章目录 JAVA序列化和反序列化序列化什么是序列化?为什么要进行序列化?如何将对线进行序列化具体实现过程 完整代码 序列化 什么是序列化? 就是将对象转化为字节的过程 为什么要进行序列化? 让数据更高效的传输让数据更好的…

ACL权限

ACL权限 目录: 1. 什么是ACL 2. 操作步骤 1. 什么是ACL ACL是Access Control List的缩写,即访问控制列表 每个项目成员在有一个自己的项目目录,对自己的目录有完全权限 项目组中的成员对项目目录也有完全权限 其他人对项目目录没有…

Spring Boot配置文件 Spring日志文件相关的知识

在上文中,小编带领大家创建了一个Spring Boot项目,并且成功的执行了第一个SPring Boot项目(在网页上运行hello world) 那么,本文的主要作用便是带领大家走进:Spring Boot配置文件 && Spring日志文件…

基于C#实现外排序

一、N 路归并排序 1.1、概序 我们知道算法中有一种叫做分治思想,一个大问题我们可以采取分而治之,各个突破,当子问题解决了,大问题也就 KO 了,还有一点我们知道内排序的归并排序是采用二路归并的,因为分治…

数据丢失抢救神器之TOP10 Android 数据恢复榜单

在快节奏的数字时代,我们的生活越来越与智能手机交织在一起,使它们成为重要数据和珍贵记忆的存储库。由于意外删除、软件故障或硬件故障而丢失数据可能是一种痛苦的经历。值得庆幸的是,技术领域提供了 Android 数据恢复软件形式的解决方案。这…

SSL握手失败的解决方案

一、SSL握手失败的原因: 1,证书过期:SSL证书有一个有效期限,如果证书过期,就会导致SSL握手失败。 2,证书不被信任:如果网站的SSL证书不被浏览器或操作系统信任,也会导致SSL握手失败…

市场被套牢,没有了解积累和分配,昂首资本一一介绍

很多投资者对市场中的积累和分配的概念不是很清楚,下面昂首资本将一一介绍。 积累意味着尽可能多地买入筹码,而不大幅抬高价格,直到在你买入时的价格水平上没有或几乎没有筹码。这种买入通常发生在市场熊市之后,此时有最佳买入价…

电路 buck-boost相关知识

BUCK-BOOST 文章目录 BUCK-BOOST前言一、DC-DC工作模式电容电感特性伏秒积平衡原理 二、BUCK电路三、BOOST电路四、BUCK-BOOST电路总结 前言 最近需要用到buck-boost相关的电路知识,于是便写下这篇文章复习一下。 一、DC-DC 在学习buck-boost电路之前我们先来看一…

2023人形机器人行业海外科技研究:从谷歌看机器人大模型进展

今天分享的是人形机器人系列深度研究报告:《2023人形机器人行业海外科技研究:从谷歌看机器人大模型进展》。 (报告出品方:华鑫证券) 报告共计:26页 大模型是人形机器人的必备要素 长期来看,人…

python教程:正常shell与反弹shell

嗨喽,大家好呀~这里是爱看美女的茜茜呐 正常shell需要先在攻击端开机情况下开启程序,然后攻击端运行程序,才能连接 反弹shell,攻击端是服务端,被攻击端是客户端 正常shell,攻击端是客户端,被攻击端是服务端 反弹shell,先启用服务端,再启用客户端 反弹shell的好处…

TDA笔记:夏克林老师,南洋理工大学

TDA比传统的统计方法有优势:benchmark中展现了这种优势 laplacian矩阵 多种单纯复形构造方式,可以构造出不同表征 二部图:Dowker complex Tor algebra可以用到多大数据 目前较新

在CentOS 7.9上搭建高性能的FastDFS+Nginx文件服务器集群并实现外部远程访问

文章目录 引言第一部分:FastDFS介绍与安装1.1 FastDFS简介1.2 FastDFS安装1.2.1 安装Tracker Server1.2.2 安装Storage Server 1.3 FastDFS配置1.3.1 配置Tracker Server1.3.2 配置Storage Server1.3.3 启动FastDFS服务 第二部分:Nginx配置2.1 Nginx安装…