Unity机器学习 ML-Agents第一个例子


上一节我们安装了机器学习mlagents的开发环境,本节我们创建第一个例子,了解什么是机器学习。
我们的例子很简单,就是让机器人自主移动到目标位置,不能移动到地板范围外。

首先我们来简单的了解以下机器学习的过程。

机器学习的过程

MLAgents机器强化学习的过程(reinforcement learning)
observation - 监视,观察
decision - 决策
action - 行动
reward - 奖罚
这4个步骤的翻译可能不是很准确,大概就是先观察,后决策,然后行动,最后奖罚。

脚本开始
我们首先创建一个新脚本,我这里创建了MoveToTarget.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using Unity.MLAgents;public class MoveToTarget : Agent
{}

机器学习的类都要要继承Agent基类。

Observation、Action(监视和行动)
我们首先通过覆写CollectObservations函数,它负责观察或者监视数据,本例是让代理(agent)观察目标target的方位。
然后覆写OnActionReceived函数,通过接受到的缓冲区的数据进行行动,这里我们要注意机器学习的算法只适用于数字,这意味着机器不知道什么是对象(object),也不知道什么是左右移动,它只负责处理数字,例如float,int类型数据。

接下来,我们在Unity中创建一个agent(代理-盒子,蓝色),target(目标-球形,黄色),还有地板plane(盒子,灰色)。如下图:


理解重要参数
在agent上添加我们的脚本MoveToTarget,这时会自动添加一个BehaviorParameters的行为参数脚本。

 
 

离散的意义

我们先来理解下离散的意义:
假如我们离散输入1,分支0输入5。
在这里插入图片描述
代码中覆写Action接收。 我们看下log,因为只有一个离散分支,所以是DiscreteActions[0]

public class MoveToTarget : Agent
{public override void OnActionReceived(ActionBuffers actions){Debug.Log(actions.DiscreteActions[0]);}
}

因为我们覆写了行动Action,我们还需要一个请求决策。我们在agent对象上添加DecisionRequester(决策请求),参数DecisonPeriod是请求的周期。
在这里插入图片描述
接下来我们就可以执行,看输出了什么。

调试和查看输出

 首先开打cmd,让我们进入vent虚拟环境中。上一篇文章我们讲过了,就是那个MLApp\venv\Scripts\activate.bat批处理文件,确保正常是这样的。
在这里插入图片描述
然后我们输入

mlagents-learn
然后会出现一个漂亮的Unity Logo,并且告诉我们,可以开始Unity运行了。如下图:
在这里插入图片描述
Unity运行后,我们看到cmd窗口和Unity的输出已经开始了。

在这里插入图片描述

我们可以看到离散的输出,因为设置了5,这里也只有0-4。

连续类型

接下来我们测试连续型
在Unity中我们把SpaceType改为continuous。并且设置Size为1。
在这里插入图片描述
脚本也需要改为接收连续型

public class MoveToTarget : Agent
{public override void OnActionReceived(ActionBuffers actions){Debug.Log(actions.ContinuousActions[0]);}
}

我们继续开始运行,在cmd中输入mlagents-learn
这时我们会得到一个报错:
在这里插入图片描述

是因为我们重试使用了相同的默认ID进行再次训练,这里我们要么使用mlagents-learn --force来强制覆盖学习,要么更换ID,mlagents-learn --run-id=test2。

那么虚拟环境开启后,我们运行Unity。
运行后,我们得到的log如下:
在这里插入图片描述

我们看到了,连续的就是-1到1的浮点数。到这里我们就了解了离散和连续的区别了。

监视和行动代码
下面我们将继续完善脚本,收集监视信息。
我们需要覆写CollectObservations(VectorSensor sensor)函数。这个函数你可以理解成AI,就是人工智能需要哪些数据才能解决你的问题。在本例中,我们希望盒子(agent)对象移动到球(target)对象的位置。我们思考以下,我们需要知道的数据有哪些?


 如果你想agent能够移动到目标,是不是需要知道agent在哪,target在哪,所以要知道两个目标的位置,所以我们通过传感器把坐标传入监视。所以代码里我们把两个物体的坐标位置传递给观察器。

	[SerializeField] Transform targetTfm;	public override void CollectObservations(VectorSensor sensor){sensor.AddObservation(transform.position);sensor.AddObservation(targetTfm.transform.position);}

行动里,actions就是(decision - 决策)的结果,我们根据决策数据进行行动。

	//行动float moveSpd = 10f;public override void OnActionReceived(ActionBuffers actions){float moveX = actions.ContinuousActions[0];float moveZ = actions.ContinuousActions[1];transform.position += new Vector3(moveX, 0f, moveZ) * Time.deltaTime * moveSpd;}

 因为我们给观察函数的信息是两个坐标,相当于6个float类型,所以Vector Observations 的 SpaceSize需要填写6。而行动,我们只需要移动agent的x和z轴,所以Vector Action的SpaceSize填写2。
在这里插入图片描述

如何让机器学习
你可以把机器学习看成是训练小狗,如果小狗完成了指定动作,你可以给它骨头。反之,给予惩罚。
在本例中,我们在地板周围围上4面墙体。我们判断如果它移动到墙就扣分,如果移动都目标就加分,我们在Unity里给Plane围上4个wall。我们添加墙体,并勾选墙体和target 的Collider的IsTrigger,方面我们进行一个触发处理。

 

添加奖励模块脚本

	private void OnTriggerEnter(Collider other){Debug.Log("OnTriggerEnter:"+other.name);if (other.name.Equals("target")){ AddReward(+1f); //奖励EndEpisode();   //结束经历plane.material.color = Color.green;Debug.Log("奖励");}else if (other.name.Equals("wall")){AddReward(-1f); //惩罚EndEpisode();   //结束plane.material.color = Color.grey;Debug.Log("惩罚");}}

上面的代码中,如果碰到了target,我们调用AddReward +1,并结束本段AI,让plane的颜色变为绿色,反之如果碰到了wall,那么就AddReward -1,plane变成灰色。

回合结束处理
每当得到奖励或者惩罚,会调用EndEpisode。当本段落结束后我们希望它继续训练,我们需要把agent对象重新复位,我们要覆写函数OnEpisodeBegin。
 

    //当一段经历开始public override void OnEpisodeBegin(){transform.position = Vector3.zero;Debug.Log("经历开始");}

运行mlagent虚拟机后我们运行unity,可以看到机器已经开始学习如何跑到target的位置了,刚开始很艰难,常常碰到墙壁,慢慢的碰到target的概率会越来越大。
效果如下:
请添加图片描述

运行过程中,可能开始agent对象很笨,基本原地打转,经过长周期的运行会越来越快的找寻到target。

几个参数

这里有几个点要说明

MaxStep(最大步)

在这里插入图片描述

这里的MaxStep是一段(Episode)最大步数,如果我们不想每次运行尝试步数太长,可以给一个数值,你可以尝试1000,10000这样的数字,到达这个后,会重新进入OnEpisodeBegin。设置的目的是如果代理一直运行都没有碰到过target,只是躲避了wall,那么可能达不到我们训练的目的。

Heuristic (启发)
这个我的理解是通过你的控制来测试你的运行逻辑是否正确。属于一个调试功能。
 

//启发public override void Heuristic(in ActionBuffers actionsOut){ActionSegment<float> continuousActions = actionsOut.ContinuousActions;continuousActions[0] = Input.GetAxisRaw("Horizontal");continuousActions[1] = Input.GetAxisRaw("Vertical");}

我们可以修改agent的BehaviorParameters的BehaviorType为Heuristic(启发),然后运行Unity就可以控制agent。模拟机器是否遇到target和wall会复位,进行调试。

机器学习加快的办法
还有一个机器学习加速的办法,那就是把当前的训练场景复制很多个,让他们同时运行来达到机器训练加速的目的,我们可以把场景和脚本稍加修改。如下:
 

我们需要修改脚本,把原来的position改为localPosition。因为这样很容易复用我们的代码,并且只用复制几个图中的ground就可以了。

全代码如下:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using Unity.MLAgents;
using Unity.MLAgents.Actuators;
using Unity.MLAgents.Sensors;public class MoveToTarget : Agent
{[SerializeField] Transform targetTfm;[SerializeField] Renderer plane;float moveSpd = 30f;//通过传感器把坐标传入监视public override void CollectObservations(VectorSensor sensor){sensor.AddObservation(transform.localPosition);sensor.AddObservation(targetTfm.transform.localPosition);}//行动接收public override void OnActionReceived(ActionBuffers actions){float moveX = actions.ContinuousActions[0];float moveZ = actions.ContinuousActions[1];transform.localPosition += new Vector3(moveX, 0f, moveZ) * Time.deltaTime * moveSpd;}//当一段经历开始public override void OnEpisodeBegin(){transform.localPosition = Vector3.zero;Debug.Log("经历开始");}//启发public override void Heuristic(in ActionBuffers actionsOut){ActionSegment<float> continuousActions = actionsOut.ContinuousActions;continuousActions[0] = Input.GetAxisRaw("Horizontal") * Time.deltaTime * moveSpd;continuousActions[1] = Input.GetAxisRaw("Vertical") * Time.deltaTime * moveSpd;}private void OnTriggerEnter(Collider other){//Debug.Log("OnTriggerEnter:"+other.name);if (other.name.Equals("target")){ AddReward(+1f); //奖励EndEpisode();   //结束经历plane.material.color = Color.green;//Debug.Log("奖励");}else if (other.name.Equals("wall")){AddReward(-1f); //惩罚EndEpisode();   //结束plane.material.color = Color.grey;//Debug.Log("惩罚");}}}

我们修改完毕后,然后运行mlagents环境并运行Unity,明显批量的速度更快了。如下图:
请添加图片描述
从GIF中能看到,亮起绿色的频率越来越快了。在我的机器上到最后就只有绿色的亮起了。

在这里插入图片描述

等机器运算完毕后会生成MovetoTart1.onnx文件。

然后在
H:\UnityProject\MLApp\venv\Scripts\results\就能看到我们所有的mlagents测试数据,包含我们需要的训练后的MoveToTar.onnx文件,我们把它复制到Unity/Assets中。这个onnx就是经过AI训练的大脑的神经网络。

我们把这个文件拖动到Model里。

 

BehaviorType选择InferenceOnly,点击Unity运行,这样这个agent就拥有找寻target的AI了。

环境设置
机器学习的环境是可以自定义配置的,可以参考这里。
创建一个movetarget.yaml文件,放到Unity/config文件夹(建立一个)
 

behaviors:MoveToTar1:trainer_type: ppohyperparameters:batch_size: 10buffer_size: 100learning_rate: 3.0e-4beta: 5.0e-4epsilon: 0.2lambd: 0.99num_epoch: 3learning_rate_schedule: linearbeta_schedule: constantepsilon_schedule: linearnetwork_settings:normalize: falsehidden_units: 128num_layers: 2reward_signals:extrinsic:gamma: 0.99strength: 1.0max_steps: 500000time_horizon: 64summary_freq: 10000

通过下面的指令进行,就是按照自定的参数来执行了。具体参数意义有机会我们后面再聊。

使用这个配置文件开启机器学习,输入下面的指令:

mlagents-learn config/movetarget.yaml --run-id=test5

在这里插入图片描述

进一步优化机器

我们继续上一个测试。当运行的时候,把target的位置改变,我们发现agent可能就找不到目标了,可以思考下为什么?如下面的动画:

请添加图片描述

对的,因为在机器学习的时候我们的target的位置一直没有发生变化,所以AI可能觉得目标是死物,所以我们可以通过修改脚本,让target每段运算完毕后改变位置,发生变化,机器就会变得聪明些。

我们修改代码如下:

    public override void OnEpisodeBegin(){transform.localPosition = new Vector3(Random.Range(-9f, 0f), 0f, Random.Range(-4f, 4f));targetTfm.localPosition = new Vector3(Random.Range(1f, 9f), 0f, Random.Range(-4f, 4f));//Debug.Log("经历开始");}

我们每次开始都随机以下target和agent的位置,但是不会重合。然后再进行机器学习。

我们输入下面指令,在上一次运行的test5的基础上进行test8运算

mlagents-learn config/movetarget.yaml --initialize-from=test5 --run-id=test8

运算后我们覆盖onnx文件,继续运行,结果如下:
请添加图片描述

Web监控

要在训练期间监控代理性能的统计信息,请使用 TensorBoard指令。

可以开另外一个cmd,进入虚拟环境(venv),输入下面指令:

tensorboard --logdir results

在这里插入图片描述
然后再浏览器输入地址就可以了

http://localhost:6006/


根据图表,你可以看到各种曲线,来修改你的机器训练。

本章内容就到这里了,官方还有很多种机器学习的例子,如果有兴趣可以自行学习。有机会下一篇文章我们进一步扩展,或者做另外一个有意思的Demo。

本章源码

GitHub - thinbug/MLApp

引用:
https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Learning-Environment-Create-New.md
 

Unity机器学习2 ML-Agents第一个例子_ml-agents小狗-CSDN博客

Unity中训练一个ML-Agents项目—解决torch和mlagents配置问题_mlagents训练_LLLQQQismmmmme的博客-CSDN博客

Unity 对接 ML-Agents 初探_艾沃尼斯的博客-CSDN博客

GitHub - thinbug/MLApp

Unity之ml-agents(一):环境配置及初步使用_mlagents-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/217990.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Nodejs 第二十章(fs 上)

概述 在 Node.js 中&#xff0c;fs 模块是文件系统模块&#xff08;File System module&#xff09;的缩写&#xff0c;它提供了与文件系统进行交互的各种功能。通过 fs 模块&#xff0c;你可以执行诸如读取文件、写入文件、更改文件权限、创建目录等操作&#xff0c;Node.js …

【Flutter】设置顶部状态栏的显示、隐藏、半透明灰色显示

【Flutter】设置顶部状态栏的显示、隐藏、半透明灰色显示 设置方法&#xff1a; // 这种模式不现实状态栏 SystemChrome.setEnabledSystemUIMode(SystemUiMode.immersiveSticky); // 这种模式显示状态栏 SystemChrome.setEnabledSystemUIMode(SystemUiMode.edgeToEdge); // 修…

鸿蒙(HarmonyOS)应用开发——生命周期、渲染控制、状态管理装饰器

生命周期 任何程序都是有一定的生命周期的。生命周期是记录从产生到销毁的过程&#xff1b;如果熟悉前端vue.js的话&#xff0c;就可以很好的理解生命周期。 自定义组件生命周期 ArkTS中&#xff0c;自定义组件提供了两个生命周期函数&#xff1a;aboutToAppear() 和aboutTo…

JVM虚拟机:G1垃圾回收器的日志分析

本文重点 本文我们将学习G1垃圾回收器的日志 使用 执行命令 java -Xms20M -Xmx20M -XX:PrintGCDetails -XX:UseG1GC 类名 分析 前面我们学习了G1垃圾回收器&#xff0c;它的回收有三种可能&#xff1a; YGC FGC MixedGC GC pause表示STW,Evacuation表示复制对象&#xff0c;…

DBeaver连接Oracle时报错:Undefined Error

连接信息检查了很多遍&#xff0c;应该是没问题的&#xff0c;而且驱动也正常下载了&#xff0c;但是就是连不上。 找了好久&#xff0c;终于找到一个可用的方式了&#xff0c;记录一下。 在安装目录修改dbeave.ini文件&#xff0c;最后一行添加 -Duser.nameTest。重启就可以…

物联网后端个人第十二周总结

学习工作进度 物联网方面 1.模拟设备通过规则引擎将数据通过mqtt进行转发 在物联网平台上实现模拟设备通过规则引擎将数据通过mqtt进行转发已经全部完成了&#xff0c;所使用的物联网平台在这方面有不少的问题和bug&#xff0c;也可能是没有按照开发者的想法对平台进行使用才导…

上手 Promethus - 开源监控、报警工具包

名词解释 Promethus 是什么 开源的【系统监控和警报】工具包 专注于&#xff1a; 1&#xff09;可靠的实时监控 2&#xff09;收集时间序列数据 3&#xff09;提供强大的查询语言&#xff08;PromQL&#xff09;&#xff0c;用于分析这些数据 功能&#xff1a; 1&#xff0…

Linux学习记录

Linux 文章目录 LinuxLinux发行版Debian 分支Red Hat 分支Arch Linux 分支 服务器基础操作lscat和less设置权限删除文件和目录搜索文件 cmake使用文件 Linux发行版 一个典型的 Linux 发行版除了 Linux 内核以外&#xff0c;通常还会包括一系列 GNU 工具和库、一些附带的软件、…

C#调用ffmpeg从视频提取图片

微信公众号“CSharp编程大全”的文章《C#从视频提取图片&#xff1f;》介绍了基于Microsoft.DirectX.AudioVideoPlayback.Video类实现从视频提取图片的方式&#xff0c;本来是想学习并测试该类的用法&#xff0c;但实际测试过程中却没有测通。百度从视频提取图片&#xff0c;网…

【数据集】全网最全的常见已公开医学影像数据集

目录 一&#xff0c;极市医学数据集汇总 1.CT 医学图像 ​编辑 2.恶性与良性皮肤癌 3.白内障数据集 4.胸部 X 光图像&#xff08;肺炎&#xff09; 5.用于图像增强的内窥镜真实合成曝光过度和曝光不足帧 6.医学家 7.乳房组织病理学图像 8.皮肤癌 MNIST&#xff1a;HA…

【广州华锐互动】Web3D云展编辑器能为展览行业带来哪些便利?

在数字时代中&#xff0c;传统的展览方式正在被全新的技术和工具所颠覆。其中&#xff0c;最具有革新意义的就是Web3D云展编辑器。这种编辑器以其强大的功能和灵活的应用&#xff0c;正在为展览设计带来革命性的变化。 广州华锐互动开发的Web3D云展编辑器是一种专门用于创建、编…

Cesium-terrain-builder编译入坑详解

本以为编译cesium-terrian-tools编译应该没那么难&#xff0c;不想问题重重&#xff0c;不想后人重蹈覆辙&#xff0c;也记录下点点滴滴。 目前网上存在的cesium代码版本主要有两个分支&#xff1a; 原始网站【不能生成layer文件&#xff0c;且经久不更新&#xff0c;使用gdal…