【机器学习】十大算法之一 “PCA”

 

作者主页:爱笑的男孩。的博客_CSDN博客-深度学习,活动,python领域博主爱笑的男孩。擅长深度学习,活动,python,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域.https://blog.csdn.net/Code_and516?type=blog个人简介:打工人。

持续分享:机器学习、深度学习、python相关内容、日常BUG解决方法及Windows&Linux实践小技巧。

如发现文章有误,麻烦请指出,我会及时去纠正。有其他需要可以私信我或者发我邮箱:zhilong666@foxmail.com 

PCA算法是机器学习中最重要的十大算法之一,它是一种数据维度压缩和特征选择的方法。

本文将详细讲解机器学习十大算法之一“PCA”


 

目录

一、PCA算法简介

二、PCA的发展历史

三、PCA算法公式与讲解

        1. 主成分分析:

        (1)归一化数据

        (2)计算协方差矩阵

        (3)计算特征值和特征向量

        (4)计算主成分

        2. 数据投影和重建

四、PCA算法原理

五、PCA算法功能

        1. 降维

        2. 压缩

        3. 特征提取

        4. 去噪

六、PCA算法示例代码

七、总结


一、PCA算法简介

        PCA(Principal Component Analysis,主成分分析)是一种广泛使用的线性降维算法,在机器学习领域被广泛应用。通俗地说,它是一种通过将高维数据映射到低维数据,保留数据主要特征的方法。在PCA中,数据被投影到一个新的低维抽象空间中,使新的特征集能最大化地解释数据集的方差,我们可以选择保留最大方差的前k个特征值。通常,PCA被用于降维,但它也被用作一种特征提取算法。

二、PCA的发展历史

        PCA算法最早由卡尔·皮尔逊(Karl Pearson)于1901年提出。他最初将PCA作为一种数据分析工具来解决数据相关性问题,PCA的目标是找到最小维度的线性空间,该空间能够最准确地描述数据集的统计特征。在20世纪50年代,P. C. Mahalanobis提出了第一个数学实现PCA算法的方法。随后,PCA被广泛应用于信号处理、图像处理、语音识别和数据挖掘等领域。在现代机器学习中,PCA通常是第一个选项,用于处理大量高维数据集的降维。

三、PCA算法公式与讲解

        PCA算法主要由两部分组成:主成分分析和数据投影。

        下面是PCA算法的数学公式和讲解:

        1. 主成分分析:

        设X是一个n个观察值和p个变量的数据矩阵(n > p),其中每一行表示一个观察值,每列表示一个变量,计算过程如下:

        (1)归一化数据

        其中,xˉi​表示第i个特征值的均值。 

        (2)计算协方差矩阵

        其中,σij​表示第i个特征值和第j个特征值之间的协方差。 

        (3)计算特征值和特征向量

        对于协方差矩阵Σ,我们可以求解它的特征值和特征向量。其中,特征向量v满足:

        其中,λ是特征向量v对应的特征值。特征值和特征向量的计算通常使用标准矩阵计算库(如NumPy)进行。 

        (4)计算主成分

        对于数据矩阵X,我们可以通过计算它的主成分来实现降维。PCA的目标是找到主成分,这些主成分能够最大化数据集的方差。对于特征向量v和对应的特征值λ,计算它们的PCA成分为:

        这些PCA成分包含了原始数据矩阵X的大部分信息。PCA的前k个成分可以用于数据的降维表示。 

        2. 数据投影和重建

        PCA还可以对原始数据进行投影和重建。给定一个新的观察值x,可以通过计算其PCA投影来实现数据的降维:

        其中,vk​是前k个主成分的向量。原始数据可以通过反向投影进行重建: 

        其中,xˉ是原始数据的均值。这个过程可以通过计算反向PCA投影来实现。 

四、PCA算法原理

        PCA算法的原理是将高维数据集映射到低维空间中,同时保留数据集的主要信息。具体来说,PCA通过计算协方差矩阵和特征向量来确定数据集的主方向,然后将数据集投影到主方向上。在新的低维空间中,每个特征值都是线性无关的,并且是数据变化的主要方向,因此,它们可以更好地表示数据集。

五、PCA算法功能

        PCA算法在机器学习中有许多用途,如:

        1. 降维

        PCA可以将高维数据集降到更低的维度,减少数据存储和处理的开销。

        2. 压缩

        PCA可以将数据集表示为比原始数据集更紧凑的形式,可以用于数据压缩。

        3. 特征提取

        PCA可以从原始数据集中提取最重要的特征,这些特征可以用于构建更好的模型。

        4. 去噪

        PCA可以帮助我们去除噪声,并且使数据集更具可分性。

六、PCA算法示例代码

        下面是Python中实现PCA算法的示例代码:

# -*- coding: utf-8 -*-
import numpy as np
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt# 加载Iris数据集
data = load_iris()
X = data.data
y = data.target
target_names = data.target_names# 将数据集降维到两个成分
pca = PCA(n_components=2)
X_r = pca.fit_transform(X)# 绘制降维后数据的散点图
colors = ['navy', 'turquoise', 'darkorange']
lw = 2
for color, i, target_name in zip(colors, [0, 1, 2], target_names):plt.scatter(X_r[y == i, 0], X_r[y == i, 1], color=color, alpha=.8, lw=lw, label=target_name)
plt.legend(loc='best', shadow=False, scatterpoints=1)
plt.title('PCA of IRIS dataset')
plt.show()

        上述代码中,我们首先加载sklearn中的Iris数据集,然后使用PCA算法将其降维到两个成分。最后,我们绘制了降维后的数据集的散点图。 

        运行结果如下:

        可以看到,使用PCA算法,我们将原始数据集降到了两个成分。散点图显示数据集的三个不同类别在新的低维空间可以更清晰地分离开。

七、总结

        在本文中,我们介绍了PCA算法的基本原理,讨论了它的应用,以及在Python中如何实现。PCA算法是一种广泛使用的算法,用于降维、特征提取和数据压缩等。它可以使数据集更易于处理,并提供更好的可视化效果。但是,PCA也有一些限制,例如不能更好地理解非线性数据集。在实践中,PCA通常与其他算法一起使用,以获得更好的结果。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/2186.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

nginxWebUI 远程命令执行漏洞

漏洞介绍 nginxWebUI是一款图形化管理nginx配置的工具,能通过网页快速配置nginx的各种功能,包括HTTP和TCP协议转发、反向代理、负载均衡、静态HTML服务器以及SSL证书的自动申请、续签和配置,配置完成后可以一键生成nginx.conf文件&#xff0c…

Linux--man指令

语法: man [选项] 命令 功能: 查询命令的详细信息,包括man命令本身 选项: -k 根据关键字搜索联机帮助num 只在第num章节找-a 将所有章节的都显示出来,比如 man printf 它缺省从第一章开始搜索,知道就停止…

数据结构期末复习【更新】

数据结构期末复习【更新】 1.模式匹配2.画二叉树(根据中序和后序,前序和中序)及其线索二叉树3.求叶子结点个数4.建立二叉排序树5.广义表6.求存储地址7.代码设计8.哈夫曼树9.最小生成树10.深度遍历、广度遍历、邻接表建立11.哈希表&#xff08…

开关电源-PFC驱动电路的工作原理

PFC驱动电路的工作原理 由于PFC的控制地和MOS管组成的双向开关的源极不共地,因此需要解决开关管浮地驱动问题。 图2 驱动电路图 电路图说明: PFCPWM是DSP的PWM信号;VCC_4V和AGND是DSP侧的电源和控制地;Vccp_14V和AGND_DRV是MO…

深度学习与机器学习区别

深度学习与机器学习区别 本文目录: 一、特征提取方面 1.1、机器学习 1.2、深度学习 1.3、机器学习特征提取 1.4、深度学习特征提取 1.5、深度学习特征提取例子 二、数据量和计算性能要求 三、算法代表 3.1、朴素贝叶斯算法 3.2、决策树 四、神经网络 一、…

FineReport学习2

当原始数据中存储的字段不适宜展现在报表上;或原始数据在数据查询时不易修改,但对显示在报表中的值有要求;或需要根据不同的原始数据在报表中显示不同的值时,就可以利用数据字典做巧妙的转化 设置数据字典 数据列的过滤&#xff…

软件工程——第5章总体设计知识点整理

本专栏是博主个人笔记,主要目的是利用碎片化的时间来记忆软工知识点,特此声明! 文章目录 1.总体设计的基本目的? 2.总体设计的任务? 3.总体设计过程由哪两个阶段组成? 4.总体设计的步骤? 5…

Python基础语法笔记整理(黑马8天学会python笔记)

Python 第一章、基础语法 01.字面量(写在代码中的固定的值) 02.注释 # 单行注释 """ 多行注释 """03.变量 变量无类型,数据有类型 变量名 变量值04.数据类型 数据类型: type()05.类型转换 字符串转数字&#xff…

在 K8S 中部署一个应用 下

接着上一篇继续部署应用到 K8S中 之前简单部署的简单集群,三个工作节点是运行在 docker 和 kubelet 的,还有一个是控制节点 ReplicationController , pod 和 service 本次关系 之前有提到 ReplicationController , pod 和 服务…

使用 Debian、Docker 和 Nginx 部署 Web 应用

前言 本文将介绍基于 Debian 的系统上使用 Docker 和 Nginx 进行 Web 应用部署的过程。着重介绍了 Debian、Docker 和 Nginx 的安装和配置。 第 1 步:更新和升级 Debian 系统 通过 SSH 连接到服务器。更新软件包列表:sudo apt update升级已安装的软件…

C语言编程—预处理器

预处理器不是编译器的组成部分,但是它是编译过程中一个单独的步骤。简言之,C 预处理器只不过是一个文本替换工具而已,它们会指示编译器在实际编译之前完成所需的预处理。我们将把 C 预处理器(C Preprocessor)简写为 CP…

2022年12月份青少年软件编程Python等级考试试卷六级真题(含答案)

一、单选题(共25题,共50分) 1.数据文件“abc.txt”中包含若干个英文单词,如图所示: 读取文件“abc.txt”中数据的Python程序段如下: file abc.txt word_b [] for word in open(file):if word[0:1] a and len(word)>4:wo…