【嵌入式Linux内核驱动】SPI子系统 | 硬件原理 | 应用编程 | 内核驱动 | 总体框架

1. 硬件原理

1.1 SPI通信协议

  • SPI(Serial Peripheral Interface)是由Motorola公司开发的一种通用数据总线

  • 四根通信线:SCK(Serial Clock)、MOSI(Master Output Slave Input)、MISO(Master Input Slave Output)、SS(Slave Select)

  • 同步,全双工

  • 支持总线挂载多设备(一主多从)

1.2 硬件连接

  • 多NSS独立片选方式
  • 菊花链方式

image-20221013101029283image-20221013101057997

引脚含义
DO(MOSI)Master Output, Slave Input,
SPI主控用来发出数据,SPI从设备用来接收数据,输出引脚设置为推挽输出
DI(MISO)Master Input, Slave Output,
SPI主控用来发出数据,SPI从设备用来接收数据,输入引脚设置为浮空或上拉输入,从机不输出时为高阻态。
SCKSerial Clock,时钟
CSChip Select,芯片选择引脚,NSS 信号线由高变低,是 SPI 通讯的起始信号。NSS 信号由低变高,是 SPI 通讯的停止信号,表示本次通讯结束,从机的选中状态被取消。

移位寄存器示意图

image-20230707165907029 image-20230409213607428

1.3 时序

  • 起始:CS从高到低
  • 终止:CS从低到高

image-20230409213805870image-20230409213914435

SPI的时钟极性CPOL和时钟相位CPHA可以分别为0或1,由此构成了四种组合:

CPOLCPHA模式含义
000CLK初始电平为低电平,在第一个时钟沿采样数据
011CLK初始电平为低电平,在第二个时钟沿采样数据
102CLK初始电平为高电平,在第一个时钟沿采样数据
113CLK初始电平为高电平,在第二个时钟沿采样数据

常用的是模式0和模式3,因为它们都是在上升沿采样数据,不用去在乎时钟的初始电平是什么,只要在上升沿采集数据就行。

IIC有效字节流数据第一个字节是寄存器地址,之后是读写的数据,使用的是读写寄存器模型

SPI用指令码加读写数据模型,发送指令字节的方式来读取,从机中有指令集对应,

发送指令。

指定地址读。

指定地址写。

1.4 代码

IO模拟

void MySPI_Start(void)
{MySPI_W_SS(0);
}void MySPI_Stop(void)
{MySPI_W_SS(1);
}uint8_t MySPI_SwapByte(uint8_t ByteSend) //交换字节,发送的话就不需要读取返回值,接收的话就发送0XFF接收返回的数据。
{uint8_t i, ByteReceive = 0x00;for (i = 0; i < 8; i ++)  //模式0,其他模式对着时序图换一下MySPI_W_SCK就行{MySPI_W_MOSI(ByteSend & (0x80 >> i));MySPI_W_SCK(1);  if (MySPI_R_MISO() == 1){ByteReceive |= (0x80 >> i);}MySPI_W_SCK(0);}return ByteReceive;
}

1.5 SPI FLASH W25Qxx

1.5.1 硬件原理

  • W25Qxx系列是一种低成本、小型化、使用简单的非易失性存储器,常应用于数据存储、字库存储、固件程序存储等场景

  • 存储介质:Nor Flash(闪存)

  • 时钟频率:80MHz / 160MHz (Dual SPI) / 320MHz (Quad SPI)

  • 存储容量(24位地址):

W25Q40: 4Mbit / 512KByte

W25Q80: 8Mbit / 1MByte

W25Q16: 16Mbit / 2MByte

W25Q32: 32Mbit / 4MByte

W25Q64: 64Mbit / 8MByte

W25Q128: 128Mbit / 16MByte

W25Q256: 256Mbit / 32MByte

image-20221013101502273

spi flash hold

spi flash hold
该引脚接收到低电平时,且 /CS=0,数据引脚为高阻态,芯片可以屏蔽总线的数据和时钟信号,当引脚为高电平时,可以继续恢复对芯片的操作,适用于多设备SPI控制,分时使用。这个引脚的意义是引进了3种设备情况:设备不被选中,被选中但不工作,被选中且工作;没有这个引脚功能时,芯片只有两种情况:不被选中,选中且工作。该引脚通过控制寄存器可以有复用功能,作为数据引脚。

SPI Flash有三种工作模式

SPI Flash有三种工作模式:Standard SPI,Dual SPI,Quad SPI。这三种模式的区别在于数据引脚的数量和功能不一样。Standard SPI
标准SPI,也就是我们常说的四线:片选 (/CS),时钟 (CLK),输入数据 (DI),输出数据 (DO)。另外配有写保护 (/WP) 和维持 (/HOLD) 功能。Dual SPI
这种工作模式就是对标准SPI进行了改进,将DO,DI改成IO1和IO2,变成了双向IO口,这样一个时钟周期可以读写2位数据。写保护(/WP)和维持(/HOLD)功能仍然保留。Quad SPI
这种工作模式是对Dual SPI模式进行改进,就是上面讲的,将写保护 (/WP) 和维持 (/HOLD) 引脚复用为IO口,标记为IO3,IO4,这样总共就是四个IO口,数据传送速度更快。

image-20230711202037441

  • 空间划分:块64KB,扇区4KB,页256B
  • SPI控制逻辑
  • 状态寄存器
  • 页缓存,会对一次性写入的数据缓存

1.5.2 Flash操作注意事项

写入操作时:

  • 写入操作前,必须先进行写使能

  • 每个数据位只能由1改写为0,不能由0改写为1(不能覆盖改写,要先擦除,发送擦除指令)

  • 写入数据前必须先擦除,擦除后,所有数据位变为1

  • 擦除必须按最小擦除单元进行

  • 连续写入多字节时,最多写入一页的数据,超过页尾位置的数据,会回到页首覆盖写入

  • 写入操作结束后,芯片进入忙状态,不响应新的读写操作

读取操作时:

  • 直接调用读取时序,无需使能,无需额外操作,没有页的限制,读取操作结束后不会进入忙状态,但不能在忙状态时读取

BUSY

  • 擦除和写入会变为忙状态,每次操作都要先读是不是忙状态再操作。

WEL

  • 任何写入都要先写使能

1.5.3 代码

void W25Q64_Init(void)
{MySPI_Init();
}void W25Q64_ReadID(uint8_t *MID, uint16_t *DID)
{MySPI_Start();MySPI_SwapByte(W25Q64_JEDEC_ID); //发送读ID指令*MID = MySPI_SwapByte(W25Q64_DUMMY_BYTE); //交换读取8位厂商ID*DID = MySPI_SwapByte(W25Q64_DUMMY_BYTE); //交换读取高8位设备ID*DID <<= 8;*DID |= MySPI_SwapByte(W25Q64_DUMMY_BYTE);//交换读取低8位设备IDMySPI_Stop();
}void W25Q64_WriteEnable(void)
{MySPI_Start();MySPI_SwapByte(W25Q64_WRITE_ENABLE); MySPI_Stop();
}void W25Q64_WaitBusy(void)
{uint32_t Timeout;MySPI_Start();MySPI_SwapByte(W25Q64_READ_STATUS_REGISTER_1); //读状态寄存器Timeout = 100000;while ((MySPI_SwapByte(W25Q64_DUMMY_BYTE) & 0x01) == 0x01) //查看是否忙状态{Timeout --; if (Timeout == 0) //超时判断{break;}}MySPI_Stop();
}//页编程:页的某个地址写一堆数据
void W25Q64_PageProgram(uint32_t Address, uint8_t *DataArray, uint16_t Count) 
{uint16_t i;W25Q64_WriteEnable(); MySPI_Start();MySPI_SwapByte(W25Q64_PAGE_PROGRAM);MySPI_SwapByte(Address >> 16); //先发地址最高位MySPI_SwapByte(Address >> 8);MySPI_SwapByte(Address);for (i = 0; i < Count; i ++)  //循环发送数据{MySPI_SwapByte(DataArray[i]);}MySPI_Stop();W25Q64_WaitBusy(); //事后等待,保证出了这个函数是不忙的,会浪费资源。//也可以放在最前面,事前等待
}//扇区擦除
void W25Q64_SectorErase(uint32_t Address)
{W25Q64_WriteEnable();MySPI_Start();MySPI_SwapByte(W25Q64_SECTOR_ERASE_4KB);MySPI_SwapByte(Address >> 16);MySPI_SwapByte(Address >> 8);MySPI_SwapByte(Address);MySPI_Stop();W25Q64_WaitBusy();
}//读数据
void W25Q64_ReadData(uint32_t Address, uint8_t *DataArray, uint32_t Count)
{uint32_t i;MySPI_Start();MySPI_SwapByte(W25Q64_READ_DATA);MySPI_SwapByte(Address >> 16);MySPI_SwapByte(Address >> 8);MySPI_SwapByte(Address);for (i = 0; i < Count; i ++){DataArray[i] = MySPI_SwapByte(W25Q64_DUMMY_BYTE);}MySPI_Stop();
}

1.6 常见面试问题

SPI总线的工作频率

SPI是一种事实标准,由Motorola开发,并没有一个官方标准。已知的有的器件SPI已达到50Mbps。具体到产品中SPI的速率主要看主从器件SPI控制器的性能限制。

SPI最大传输速率受以下几个条件影响:

1)SPI的最大时钟频率;

2)CPU处理SPI数据的能力;

3)输出端驱动能力(PCB所允许的最大信号传输速率);

W25Qxx系列时钟频率:80MHz/160MHz(Dual SPI)/320MHz(Quad SPI)

SPI优缺点

SPI的优点

  • 全双工串行通信;
  • 高速数据传输速率。
  • 简单的软件配置;
  • 极其灵活的数据传输,不限于8位,它可以是任意大小的字;
  • 非常简单的硬件结构。从站不需要唯一地址(与I2C不同)。从机使用主机时钟,不需要精密时钟振荡器/晶振(与UART不同)。不需要收发器(与CAN不同)。

SPI的缺点

  • 没有硬件从机应答信号(主机可能在不知情的情况下无处发送);
  • 通常仅支持一个主设备;
  • 需要更多的引脚(与I2C不同);
  • 没有定义硬件级别的错误检查协议;
  • 与RS-232和CAN总线相比,只能支持非常短的距离;

2. 应用编程–spidev应用程序分析

内核提供的测试程序:tools\spi\spidev_fdx.c

2.1 使用方法

spidev_fdx [-h] [-m N] [-r N] /dev/spidevB.D
  • -h: 打印用法
  • -m N:先写1个字节0xaa,再读N个字节,**注意:**不是同时写同时读
  • -r N:读N个字节

2.2 代码分析

2.2.1 显示设备属性

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ReVgcpf6-1689342862460)(pic/29_spidev_dumpstat.png)]

2.2.2 读数据

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hNsNpymg-1689342862460)(pic/30_spidev_do_read.png)]

2.2.3 先写再读

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-AgQ7ji6m-1689342862460)(pic/31_spidev_write_then_read.png)]

2.2.4 同时读写

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-URIIsxc2-1689342862461)(pic/32_spidev_read_write_same_time.png)]

2.3 spidev的缺点

使用read、write函数时,只能读、写,这是半双工方式。

使用ioctl可以达到全双工的读写。

但是spidev有2个缺点:

  • 不支持中断
  • 只支持同步操作,不支持异步操作:就是read/write/ioctl这些函数只能执行完毕才可返回

3.内核驱动

总线-设备-驱动模型

spi_drv_frame

SPI子系统中:SPI控制器、SPI设备-驱动。

image-20230409215517035

image-20230409215537806image-20230409215943244

在设备树里,会有一个节点用来表示SPI控制器。

在这个SPI控制器下面,连接有哪些SPI设备?会在设备树里使用子节点来描述SPI设备。

image-20230409221954062

官方的通用dev驱动spidev驱动程序

自己编写设备spi驱动程序,如DAC4822,TLC5615,OLED SD1306

SPI_Master驱动程序框架

SPI_Slave_Mode驱动程序框架

4. 总体框架

image-20230425103401023

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/22142.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JVM_00000

JVM 所谓虚拟机&#xff08;Virtual Machine&#xff09;就是一台虚拟的计算机。它是一款软件&#xff0c;用来执行一系列虚拟计算机指令。大体上&#xff0c;虚拟机可以分为系统虚拟机和程序虚拟机。 Visual Box&#xff0c;VMware就属于系统虚拟机&#xff0c;它们完全是对物…

【云原生】k8s配置资源管理

1.Secret的资源配置 1.1 Secret配置的相关说明 Secret 是用来保存密码、token、密钥等敏感数据的 k8s 资源&#xff0c;这类数据虽然也可以存放在 Pod 或者镜像中&#xff0c;但是放在 Secret 中是为了更方便的控制如何使用数据&#xff0c;并减少暴露的风险 Secret 有三种…

【dij变形】牛客练习赛93 C

C-点权_牛客练习赛93 (nowcoder.com) 题意&#xff1a; 思路&#xff1a; 重要的是在松弛的时候要满足什么条件才开始松弛 这里是用两个点来松弛一个点 Code&#xff1a; #include <bits/stdc.h>//#define int long longusing namespace std;const int mxn1e510; co…

fastapi docs打开为空白解决办法

空白的原因 使用的cdn为国外cdn 解决办法 使用国内cdn 解决步骤 1.打开此文件D:\Program Files\Python\Lib\site-packages\fastapi\openapi\docs.py 2.修改cdn地址 国内cdn不好找呀 &#xff08;1&#xff09;.七牛云存储 开放静态文件CDN&#xff0c;地址&#xff1a;h…

C语言——动态内存管理(malloc, calloc, realloc, free, 柔性数组详解)

C语言——动态内存管理 1. 为什么需要动态内存管理 我们以往定义数组&#xff0c;都是这么定义的&#xff1a; int nums[10] {0};以这种方式开辟空间有两个特点&#xff1a; 空间开辟的大小是固定的数组在声明的时候&#xff0c;必须指定数组的长度&#xff0c;它所需要的内…

scrapy---爬虫界的django

1介绍 scrapy架构 引擎(EGINE)&#xff1a;引擎负责控制系统所有组件之间的数据流&#xff0c;并在某些动作发生时触发事件。大总管&#xff0c;负责整个爬虫数据的流动 调度器(SCHEDULER)用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个U…

引入头文件#include <iostream>的时候发生了什么?

<iostream> namespace std {extern istream cin;extern ostream cout;extern ostream cerr;extern ostream clog;extern wistream wcin;extern wostream wcout;extern wostream wcerr;extern wostream wclog;};cin是什么&#xff1f; cin extern istream cin; The objec…

JVM 中的垃圾回收策略

文章目录 JVM 中的垃圾回收策略死亡对象的判断算法引用计数可达性分析 垃圾回收算法标记-清除算法复制算法标记-整理算法分代算法 JVM 中的垃圾回收策略 C 语言中&#xff0c;malloc 的内存必须 手动 free&#xff0c;否则容易出现内存泄漏&#xff08;光申请内存&#xff0c;…

Docker查看相关存储信息以及扩容

Docker查看相关存储信息以及扩容 &#xff08;mac环境&#xff09; 查看docker基本信息&#xff1a; docker info可以看到docker的存储位置在这里 2. 查看mac的所有盘以及分区大小情况 diskutil listdocker查看网络信息&#xff1a; docker ps # 查看所有在运行的container信…

中信银行西安分行举办金融助力外贸企业“走出去“高端论坛

7月14日&#xff0c;中信银行西安分行联合中国出口信用保险公司陕西分公司、西安市工商联举办"智汇西安、信融全球"——金融助力外贸企业"走出去"高端论坛。该论坛紧跟“加快建设贸易强国”的战略指引&#xff0c;以创新金融服务助力外贸企业融入高水平对外…

第51步 深度学习图像识别:Convolutional Vision Transformer建模(Pytorch)

基于WIN10的64位系统演示 一、写在前面 &#xff08;1&#xff09;Convolutional Vision Transformers Convolutional Vision Transformer&#xff08;ConViT&#xff09;是一种结合了卷积神经网络&#xff08;Convolutional Neural Networks&#xff0c;简称CNN&#xff09…

08_SPI-Flash 扇区擦除实验

08_SPI-Flash 扇区擦除实验 1. 实验目标2. 操作时序2.1 扇区擦除操作指令2.2 完整扇区擦除操作时序 3. 程序框图3.1 顶层框图3.2 扇区擦除模块 4. 波形图5. RTL5.1 flash_se_ctrl5.2 spi_flash_se 6. Testbench6.1 tb_flash_se_ctrl6.2 tb_spi_flash_se 1. 实验目标 编写扇区擦…