04、基于高斯分布的异常检测算法

04、基于高斯分布的异常检测算法原理与实践

开始学习机器学习啦,已经把吴恩达的课全部刷完了,现在开始熟悉一下复现代码。对这个手写数字实部比较感兴趣,作为入门的素材非常合适。

数据的严重偏斜往往会导致监督学习算法面临巨大的挑战——尤其是在负样本数量稀缺的情况下,监督学习模型难以充分汲取必要的知识。这就引发了一个重要的问题:我们能否从这种极端不平衡的数据中成功地训练出一个有效的异常检测模型呢?答案就在于基于统计学的异常检测算法。

此类方法通常建立在一种假设之上,即给定的数据集遵循某种随机分布模型,任何与该模型明显不符的样本都会被视为异常样本。在这些基于统计学的异常检测算法中**,高斯模型是最常用分布模型**。

当然,如果给定的原始数据集不遵循高斯分布,我们可以通过坐标轴变换的方式将其变换为符合高斯分布的数据再进行异常检测。

1、基于高斯分布的异常检测算法原理

高斯分布的概率密度函数如下所示:
在这里插入图片描述
处于图片的中心位置,是概率密度最高的地方,这代表此种情况是经常发生的。越向两边概率密度越低,这代表这些情况较小发生,更有可能是异常情况。我们需要的是确定这个阈值,当概率密度小于多少时则认定其为异常。

这种基于高斯分布的异常检测算法在训练时不需要标签,只需要根据训练数据计算出各个特征的均值与方差即可(就是高斯分布的参数)。在训练之后,可以根据少量的数据确定异常的阈值,从而实现整个异常检测算法。

对于高维的异常检测算法,其理论是一致的,如下面的二维概率密度的等高线图,处于边缘的会往往会被视为异常情况(小概率出现的事件):
在这里插入图片描述
在这里插入图片描述
至于为什么小概率事件会等同于异常呢,打个比方,训练集得出结论人是吃米的,但是出来一个奇葩人居然吃虫子,那么这个不相当于出现异常了嘛。

2、基于高斯分布的异常检测算法实现

STEP1: 从训练集计算数据的分布特性,主要是均值和方差

# 计算数据的均值与方差
def estimate_gaussian(X):mu = np.mean(X, axis=0)var = np.var(X, axis=0)return mu, var

STEP2: 将交叉验证集应用到概率分布上,得到其分布概率

# 定义一个函数,名为multivariate_gaussian,输入参数为X(样本点)、mu(均值向量)和var(方差)
def multivariate_gaussian(X, mu, var):# 计算均值向量的长度,也即特征的数量k = len(mu)# 如果输入的协方差矩阵是一维的,则将其转换为对角矩阵if var.ndim == 1:var = np.diag(var)# 将输入的样本点X减去均值向量mu,进行中心化处理X = X - mu# 计算多元高斯分布的概率密度函数值# 公式中的各部分分别计算,最后相乘得到结果p = (2 * np.pi) ** (-k / 2) * np.linalg.det(var) ** (-0.5) * \np.exp(-0.5 * np.sum(np.matmul(X, np.linalg.pinv(var)) * X, axis=1))# 返回概率密度函数值return p

其对应的公式如下:
在这里插入图片描述


STEP3: 根据交叉验证集得出阈值

epsilon 的选择使用的是便利的方法,以找到一个使得F1 score最大的epsilon :

def select_threshold(y_val, p_val):"""通过选择最佳的阈值来最大化F1分数。参数:y_val (numpy数组): 真实的标签值,1代表正类,0代表负类。p_val (numpy数组): 预测的概率值。返回:best_epsilon, best_F1: 包含最佳阈值和对应的最大F1分数。"""best_epsilon = 0  # 初始化最佳阈值为0best_F1 = 0  # 初始化最佳F1分数为0F1 = 0  # 当前的F1分数# 计算步长,使得在p_val的最小值和最大值之间有1000个步骤step_size = (max(p_val) - min(p_val)) / 1000# 对p_val中的每一个值进行遍历,从最小值到最大值,步长为step_sizefor epsilon in np.arange(min(p_val), max(p_val), step_size):# 根据当前的阈值epsilon,得到预测的标签predictions = (p_val < epsilon)# 计算假阳性(预测为正但实际为负的样本数)fp = sum((predictions == 1) & (y_val == 0))# 计算真阳性(预测为正且实际为正的样本数)tp = np.sum((predictions == 1) & (y_val == 1))# 计算假阴性(预测为负但实际为正的样本数)fn = np.sum((predictions == 0) & (y_val == 1))# 计算精确度(查准率)prec = tp / (tp + fp)# 计算召回率(查全率)rec = tp / (tp + fn)# 计算F1分数F1 = 2 * prec * rec / (prec + rec)# 如果当前的F1分数比之前的最佳F1分数还要大,则更新最佳F1分数和对应的阈值if F1 > best_F1:best_F1 = F1best_epsilon = epsilon# 返回最佳阈值和对应的最大F1分数return best_epsilon, best_F1

STEP4: 由此就可以根据交叉验证集得到的阈值计算训练集中的异常数据了
下面是结果:
在这里插入图片描述

3、完整代码

工程的下载链在最上方:

import numpy as np
import matplotlib.pyplot as pltdef load_data():X = np.load("Anomaly_Detection_data/X_part1.npy")X_val = np.load("Anomaly_Detection_data/X_val_part1.npy")y_val = np.load("Anomaly_Detection_data/y_val_part1.npy")return X, X_val, y_val
# 计算数据的均值与方差
def estimate_gaussian(X):mu = np.mean(X, axis=0)var = np.var(X, axis=0)return mu, var# 定义一个函数,名为multivariate_gaussian,输入参数为X(样本点)、mu(均值向量)和var(方差)
def multivariate_gaussian(X, mu, var):# 计算均值向量的长度,也即特征的数量k = len(mu)# 如果输入的协方差矩阵是一维的,则将其转换为对角矩阵if var.ndim == 1:var = np.diag(var)# 将输入的样本点X减去均值向量mu,进行中心化处理X = X - mu# 计算多元高斯分布的概率密度函数值# 公式中的各部分分别计算,最后相乘得到结果p = (2 * np.pi) ** (-k / 2) * np.linalg.det(var) ** (-0.5) * \np.exp(-0.5 * np.sum(np.matmul(X, np.linalg.pinv(var)) * X, axis=1))# 返回概率密度函数值return pdef visualize_fit(X, mu, var):# 首先画出等高线,坐标在0, 35.5之间X1, X2 = np.meshgrid(np.arange(0, 35.5, 0.5), np.arange(0, 35.5, 0.5))Z = multivariate_gaussian(np.stack([X1.ravel(), X2.ravel()], axis=1), mu, var)Z = Z.reshape(X1.shape)plt.plot(X[:, 0], X[:, 1], 'rx')if np.sum(np.isinf(Z)) == 0:plt.contour(X1, X2, Z, levels=10 ** (np.arange(-20., 1, 3)), linewidths=1)plt.title("The Gaussian contours of the distribution fit to the dataset")plt.ylabel('Throughput (mb/s)')plt.xlabel('Latency (ms)')plt.show()def select_threshold(y_val, p_val):"""通过选择最佳的阈值来最大化F1分数。参数:y_val (numpy数组): 真实的标签值,1代表正类,0代表负类。p_val (numpy数组): 预测的概率值。返回:best_epsilon, best_F1: 包含最佳阈值和对应的最大F1分数。"""best_epsilon = 0  # 初始化最佳阈值为0best_F1 = 0  # 初始化最佳F1分数为0F1 = 0  # 当前的F1分数# 计算步长,使得在p_val的最小值和最大值之间有1000个步骤step_size = (max(p_val) - min(p_val)) / 1000# 对p_val中的每一个值进行遍历,从最小值到最大值,步长为step_sizefor epsilon in np.arange(min(p_val), max(p_val), step_size):# 根据当前的阈值epsilon,得到预测的标签predictions = (p_val < epsilon)# 计算假阳性(预测为正但实际为负的样本数)fp = sum((predictions == 1) & (y_val == 0))# 计算真阳性(预测为正且实际为正的样本数)tp = np.sum((predictions == 1) & (y_val == 1))# 计算假阴性(预测为负但实际为正的样本数)fn = np.sum((predictions == 0) & (y_val == 1))# 计算精确度(查准率)prec = tp / (tp + fp)# 计算召回率(查全率)rec = tp / (tp + fn)# 计算F1分数F1 = 2 * prec * rec / (prec + rec)# 如果当前的F1分数比之前的最佳F1分数还要大,则更新最佳F1分数和对应的阈值if F1 > best_F1:best_F1 = F1best_epsilon = epsilon# 返回最佳阈值和对应的最大F1分数return best_epsilon, best_F1# Load the dataset
# 利用吞吐量(兆比特/秒)和每台服务器的响应延迟(毫秒)来判断服务器是否正常运行
X_train, X_val, y_val = load_data()
print ('The shape of X_train is:', X_train.shape)
print ('The shape of X_val is:', X_val.shape)
print ('The shape of y_val is: ', y_val.shape)# Estimate mean and variance of each feature
# 一共两个特征,因此返回的是一个包含两个元素的数组
mu, var = estimate_gaussian(X_train)
visualize_fit(X_val, mu, var)
p_val = multivariate_gaussian(X_val, mu, var)
p = multivariate_gaussian(X_train, mu, var)
epsilon, F1 = select_threshold(y_val, p_val)# Find the outliers in the training set
outliers = p < epsilon
# Visualize the fit
visualize_fit(X_train, mu, var)
# 查看训练数据
plt.scatter(X_train[:, 0], X_train[:, 1], marker='x', c='b')
plt.title("The first dataset")
plt.ylabel('Throughput (mb/s)')
plt.xlabel('Latency (ms)')
plt.axis([0, 30, 0, 30])
# Draw a red circle around those outliers
plt.plot(X_train[outliers, 0], X_train[outliers, 1], 'ro',markersize= 10,markerfacecolor='none', markeredgewidth=2)
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/226379.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

做项目,要从学生思维里跳出来

今天分享下在23期群的聊天记录&#xff0c;关于做项目正确的思维&#xff0c;自己曾经走过一些弯路&#xff0c;希望大家能Get到。 做项目&#xff0c;一定要从学生思维里跳出来。 1.学生思维就是前期就想每个细节都要搞懂&#xff0c;感觉才能往下&#xff0c;其实像lora&…

【数据结构复习之路】树和二叉树(严蔚敏版)万字详解主打基础

专栏&#xff1a;数据结构复习之路 复习完上面四章【线性表】【栈和队列】【串】【数组和广义表】&#xff0c;我们接着复习 树和二叉树&#xff0c;这篇文章我写的非常详细且通俗易懂&#xff0c;看完保证会带给你不一样的收获。如果对你有帮助&#xff0c;看在我这么辛苦整理…

pyecharts绘制自定义点+连线取消箭头+时间帧叠加

pyecharts之Geo地图大法&#xff08;详解&#xff0c;代码带注释效果图&#xff09; 近期项目上有地图自定义绘点连线分严重等级的需求&#xff0c;整了&#xff0c;分开处理啥都好说&#xff0c;多个数据放在同一维度的时候&#xff0c;只恨pyecharts的开发者为什么把功能整得…

Stable Diffusion绘画系列【3】:二次元动漫画风

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…

2005-2022年全球各国经济距离数据

2005-2022年全球各国经济制度距离数据 1、时间&#xff1a;2005-2022年 2、指标&#xff1a;国家、年份、经济距离1&#xff08;根据美国传统基金会世界经济自由度指数整理&#xff09;、经济距离2&#xff08;参考(Kogut&Singh,1988)构建经济制度距离&#xff09; 3、范…

Compose入门

​ 本篇文章主要是为了对Compose有一个初步了解。知道Compose是做什么的&#xff0c;用Compose能干什么&#xff0c;在目前的各种UI框架下面有些优势&#xff0c;参考Google官网的解释加上一些自己的理解生成的一篇文章。本人也是Compose初学者&#xff0c;通过每一步学习遇到哪…

ROS知识:卡尔曼滤波

https://en.wikipedia.org/wiki/Kalman_filter 一、提要 在卡尔曼滤波的相关技术文献中,其数学表达看起来都非常晦涩和不透明。这很糟糕,如果您以正确的方式看待卡尔曼滤波器,它实际上非常简单易懂。这里的叙述简单,先决条件也很简单;您所需要的只是对概率和矩阵的基本了解…

你真的懂人工智能吗?AI真的只是能陪你聊天而已吗?

提到AI这个词语&#xff0c;相信大家并不陌生&#xff0c;尤其是前段时间爆火的chatgpt&#xff0c;让我们发现似乎AI已经渗透到我们生活的方方面面了&#xff0c;但是你确定你真的了解AI这个事物吗&#xff1f;它真的只是一个简简单单的人工智能吗&#xff1f;恐怕不止如此。那…

有权图的最短路径算法

目录 单源最短路径问题 Dijkstra算法 原理 ​ 获得最短路径长度的Dijkstra代码实现 时间复杂度 算法优化 优先队列优化后的代码实现 时间复杂度 可以具体获得最短路径的Dijkstra代码实现 Bellman-Ford算法 原理 代码实现 Floyed算法 原理 代码实现 单源最短路…

http项目遇到的问题

问题 启动 ./httpServer 8081后, 在浏览器地址栏输入:http://192.168.186.128:8081/test_cgi&#xff0c;按下回车 陆续获取几个新连接&#xff0c; 在第四次获取到新连接时&#xff0c;输出 get a new link ... sock fd : 5 ReadLine函数 -> recv返回值为0 请求状态行的长…

JRT对历史表和$get实现

由于Cache没有什么表数据大了查询和插入性能下降的问题&#xff0c;而关系库在数据量上千万后会性能下降&#xff0c;之前关注点都是Java业务脚本化和开发部署简单&#xff0c;还没管关系库单表大问题和级联查询复杂后慢的问题&#xff0c;现在开始解决这俩问题&#xff0c;这是…

【Java】7. 类型转换和类型判断

7. 类型转换 7.1 基本类型转换 顺箭头&#xff1a;隐式转换&#xff08;自动&#xff09; 逆箭头&#xff1a;强制转换&#xff08;可能造成精度丢失&#xff09; byte a 10; int b a; int c 1000; byte d (byte) c; System.out.println(d); // -24 7.2 包装类型与基…