人工智能|机器学习——感知器算法原理与python实现

感知器算法是一种可以直接得到线性判别函数的线性分类方法,它是基于样本线性可分的要求下使用的。

一、线性可分与线性不可分

为了方便讨论,我们蒋样本_{X}增加了以为常数,得到增广样向量 y=(1;x_{1};x_{2};...;x_{n},则n个样本的集合为y_{1},y_{2};y_{3},.....,y_{n},增广权矢量表示为 a = (\omega _{0}\omega _{1};\omega _{2}....,\omega _{d},我们得到新的怕没别函数 

 二、算法步骤

三、算法实现

1.生成数据

 

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets# 加载数据集
iris = datasets.load_iris()# 提取特征和目标变量
x = iris.data
y = iris.target# 只选择两个特征变量和两个目标类别,进行简单的二分类
x = x[y < 2, :2]
y = y[y < 2]# 绘制散点图
plt.scatter(x[y == 0, 0], x[y == 0, 1])  # 绘制类别0的样本
plt.scatter(x[y == 1, 0], x[y == 1, 1])  # 绘制类别1的样本
plt.show()

2.实现算法

def check(w, x, y):# 检查预测结果是否与真实标签一致return ((w.dot(x.T)>0).astype(int)==y).all() def train(w, train_x, train_y, learn=1, max_iter=200):iter = 0while ~check(w, train_x, train_y) and iter<=max_iter:iter += 1for i in range(train_y.size):predict_y = (w.dot(train_x[i].T)>0).astype(int)if predict_y != train_y[i]:# 根据预测和真实标签的差异调整权重w += learn*(train_y[i] - predict_y)*train_x[i]return wdef normalize(x):# 归一化函数,将输入数据转换到0-1范围max_x = np.max(x, axis=0)min_x = np.min(x, axis=0)norm_x = (max_x - x) / (max_x - min_x)return norm_xnorm_x = normalize(x)
train_x = np.insert(norm_x, 0, values=np.ones(100).T, axis=1)
w = np.random.random(3)
w = train(w, train_x, y)

3.绘制决策边界 

def plot_decision_boundary(w, axis):# 生成决策边界的坐标网格x0, x1 = np.meshgrid(np.linspace(axis[0], axis[1], int((axis[1] - axis[0])*100)).reshape(1, -1),np.linspace(axis[2], axis[3], int((axis[3] - axis[2])*100)).reshape(1, -1))x_new = np.c_[x0.ravel(), x1.ravel()]x_new = np.insert(x_new, 0, np.ones(x_new.shape[0]), axis=1)# 对网格中的点进行预测y_predict = (w.dot(x_new.T)>0).astype(int)zz = y_predict.reshape(x0.shape)# 设置自定义的颜色映射from matplotlib.colors import ListedColormapcustom_cmap = ListedColormap(['#EF9A9A', '#FFF59D', '#90CAF9'])# 绘制决策边界plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)# 绘制决策边界
plot_decision_boundary(w, axis=[-1, 1, -1, 1])
# 绘制类别为0的样本点(红色)
plt.scatter(norm_x[y==0, 0], norm_x[y==0, 1], color='red')
# 绘制类别为1的样本点(蓝色)
plt.scatter(norm_x[y==1, 0], norm_x[y==1, 1], color='blue')
# 显示图形
plt.show()

4.使用sklearn库完成算法

from sklearn.datasets import make_classificationx,y = make_classification(n_samples=1000, n_features=2,n_redundant=0,n_informative=1,n_clusters_per_class=1)#n_samples:生成样本的数量#n_features=2:生成样本的特征数,特征数=n_informative() + n_redundant + n_repeated#n_informative:多信息特征的个数#n_redundant:冗余信息,informative特征的随机线性组合#n_clusters_per_class :某一个类别是由几个cluster构成的 #训练数据和测试数据
x_data_train = x[:800,:]
x_data_test = x[800:,:]
y_data_train = y[:800]
y_data_test = y[800:]#正例和反例
positive_x1 = [x[i,0] for i in range(1000) if y[i] == 1]
positive_x2 = [x[i,1] for i in range(1000) if y[i] == 1]
negetive_x1 = [x[i,0] for i in range(1000) if y[i] == 0]
negetive_x2 = [x[i,1] for i in range(1000) if y[i] == 0]
from sklearn.linear_model import Perceptron
#定义感知机
clf = Perceptron(fit_intercept=False,shuffle=False)
#使用训练数据进行训练
clf.fit(x_data_train,y_data_train)
#得到训练结果,权重矩阵
print(clf.coef_)
#输出为:[[-0.38478876,4.41537463]]#超平面的截距,此处输出为:[0.]
print(clf.intercept_)#利用测试数据进行验证
acc = clf.score(x_data_test,y_data_test)
print(acc)
#得到的输出结果为0.98,这个结果还不错吧。
from matplotlib import pyplot as plt
#画出正例和反例的散点图
plt.scatter(positive_x1,positive_x2,c='red')
plt.scatter(negetive_x1,negetive_x2,c='blue')
#画出超平面(在本例中即是一条直线)
line_x = np.arange(-4,4)
line_y = line_x * (-clf.coef_[0][0] / clf.coef_[0][1]) - clf.intercept_
plt.plot(line_x,line_y)
plt.show()

 

四、优缺点

1.优点:

简单且易于实现:感知器算法是一种简单而有效的分类算法,它的基本原理易于理解,实现也相对简单。
收敛性保证:如果数据集是线性可分的,感知器算法可以收敛到最优解,即找到将不同类别分开的最优超平面。
适用于大型数据集:感知器算法具有较好的可扩展性,对于大型数据集也能够有效处理。

2缺点:

仅适用于线性可分问题:感知器算法只能处理线性可分的问题,当数据集不满足线性可分条件时,算法不能收敛到最优解。
对初始权重敏感:感知器算法的收敛性与初始权重的选择有关,较差的初始权重选择可能导致算法无法收敛或者收敛到较差的分类结果。
无法处理非线性问题:感知器算法无法处理非线性的分类问题,对于非线性数据集,需要使用更复杂的分类算法或者考虑使用特征转换等技术。
只能进行二分类:感知器算法只能进行二分类,无法直接处理多分类问题,需要通过拓展或组合多个感知器来处理多分类任务。

总体而言,感知器算法是一种简单而有效的线性分类算法,适用于处理线性可分的二分类问题。然而,对于非线性问题或者多分类问题,感知器算法存在一些局限性,需要使用其他更复杂的算法来解决。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/227758.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【算法刷题】Day7

文章目录 283. 移动零1089. 复写零 283. 移动零 原题链接 看到题目&#xff0c;首先看一下题干的要求&#xff0c;是在原数组内进行操作&#xff0c;平切保持非零元素的相对顺序 这个时候我们看到了示例一&#xff1a; [ 0, 1, 0, 3,12 ] 这个时候输出成为了 [ 1, 3, 12, 0, …

STK Components 二次开发- 卫星地面站

前期卫星地面站创建已经说过&#xff0c;本次说一下卫星和地面站可见性时卫星名称和轨迹线变色问题。 1.创建卫星 // Get the current TLE for the given satellite identifier. var tleList TwoLineElementSetHelper.GetTles(m_satelliteIdentifier, JulianDate.Now);// Us…

计网Lesson4 - 计算机组网模型

文章目录 计算机的连接方式1. 两台计算机的互联2. 多台计算机的互联&#xff08;旧式&#xff09;3. 多台计算机的互联 --- 集线器&#xff08;Hub&#xff09;4. 网桥5. 多台计算机的互联 --- 交换器&#xff08;Switch&#xff09; 计算机的连接方式 1. 两台计算机的互联 网…

ArrayList与顺序表的简单理解

前言----list 在集合框架中&#xff0c;List是一个接口&#xff0c;继承自Collection。Collection也是一个接口&#xff0c;该接口中规范了后序容器中常用的一些方法&#xff0c;具体如下所示&#xff1a; Iterable也是一个接口&#xff0c;表示实现该接口的类是可以逐个元素进…

前端量子纠缠 效果炸裂 multipleWindow3dScene

我 | 在这里 &#x1f575;️ 读书 | 长沙 ⭐软件工程 ⭐ 本科 &#x1f3e0; 工作 | 广州 ⭐ Java 全栈开发&#xff08;软件工程师&#xff09; &#x1f383; 爱好 | 研究技术、旅游、阅读、运动、喜欢流行歌曲 ✈️已经旅游的地点 | 新疆-乌鲁木齐、新疆-吐鲁番、广东-广州…

丽晶酒店及度假村打造绮丽之境“美食实验室”中国市场首秀

于重庆丽晶酒店以艺术与美食的碰撞演绎“对比之美”&#xff0c;感官之华 2023年11月28日&#xff0c;中国上海 ——基于对当下消费趋势的敏锐洞察&#xff0c;洲际酒店集团旗下奢华品牌丽晶酒店及度假村近年来不断焕新&#xff0c;以崭新形象缔造现代奢华的旅居体验。作为丽晶…

基于SSM的酒店预订管理系统设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…

广州华锐互动:VR虚拟现实内容创作工具带来全新的应用场景

随着科技的不断发展&#xff0c;低代码编辑工具已经成为了一种越来越受欢迎的开发方式。它可以帮助开发人员快速构建应用程序&#xff0c;降低开发成本&#xff0c;提高开发效率&#xff0c;而VR虚拟现实内容创作工具带来了全新的应用场景。 VR虚拟现实内容创作工具是广州华锐互…

《数据结构、算法与应用C++语言描述》-线索二叉树的定义与C++实现

_23Threaded BinaryTree 可编译运行代码见&#xff1a;GIithub::Data-Structures-Algorithms-and-Applications/_24Threaded_BinaryTree 线索二叉树定义 在普通二叉树中&#xff0c;有很多nullptr指针被浪费了&#xff0c;可以将其利用起来。 首先我们要来看看这空指针有多少…

Webshell混淆免杀的一些思路

简介 为了避免被杀软检测到&#xff0c;黑客们会对Webshell进行混淆免杀。本文将介绍一些Webshell混淆免杀的思路&#xff0c;帮助安全人员更好地防范Webshell攻击。静态免杀是指通过对恶意软件进行混淆、加密或其他技术手段&#xff0c;使其在静态分析阶段难以被杀毒软件或安全…

linux 安装 mvn

mvn 下载地址&#xff1a;https://maven.apache.org/download.cgi 选择一个合适的版本 cd /opt && curl -o apache-maven-3.8.6-bin.tar.gz https://dlcdn.apache.org/maven/maven-3/3.8.6/binaries/apache-maven-3.8.6-bin.tar.gz tar -xzf apache-maven-3.8.6-bin.…

【EI会议投稿】第四届物联网与智慧城市国际学术会议(IoTSC 2024)

第四届物联网与智慧城市国际学术会议 2024 4th International Conference on Internet of Things and Smart City 继IoTSC前三届的成功举办&#xff0c;第四届物联网与智慧城市国际学术会议&#xff08;IoTSC 2024&#xff09;将于2024年3月22-24日在河南洛阳举办。 智慧城市的…