《数据结构、算法与应用C++语言描述》-线索二叉树的定义与C++实现

_23Threaded BinaryTree

可编译运行代码见:GIithub::Data-Structures-Algorithms-and-Applications/_24Threaded_BinaryTree

线索二叉树定义

在普通二叉树中,有很多nullptr指针被浪费了,可以将其利用起来。

在这里插入图片描述

首先我们要来看看这空指针有多少个呢?对于一个有n个结点的二叉链表,每个结点有指向左右孩子的两个指针域,所以一共是2n个指针域。而n个结点的二叉树一共有n-1条分支线数,也就是说,其实是存在2n-(n-1)=n+1个空指针域

对上图**(参考:《大话数据结构 溢彩加强版 程杰》160页图)**做中序遍历,得到了HDIBJEAFCG这样的字符序列,遍历过后,我们可以知道,结点I的前驱是D,后继是B,结点F的前驱是A,后继是C。也就是说,我们可以很清楚地知道任意一个结点,它的前驱和后继是哪一个结点。

可是这是建立在已经遍历过的基础之上的。在二叉链表上,我们只能知道每个结点指向其左右孩子结点的地址,而不知道某个结点的前驱是谁,后继是谁。要想知道,必须遍历一次。以后每次需要知道时,都必须先遍历一次。这样比较浪费时间。

我们可以考虑利用那些空地址,存放指向结点在某种遍历次序下的前驱和后继结点的地址。我们把这种指向前驱和后继的指针称为线索,加上线索的二叉链表称为线索链表,相应的二叉树就称为线索二叉树(Threaded Binary Tree)。

我们把二叉树进行中序遍历后,将所有的空指针域中的rchild,改为指向它的后继结点。将所有空指针域中的lchild,改为指向当前结点的前驱。由此得出,经过线索化的二叉树变成了一个双向链表。双向链表相比于二叉树更容易找到某节点的前驱和后继节点。因此,如果所用的二叉树需经常遍历或查找结点时需要某种遍历序列中的前驱和后继,那么采用线索二叉链表的存储结构就是非常不错的选择。

但是还有一个问题,如果将这些空指针作为线索后无法区分该指针是线索还是指向孩子节点,因此需要标志位LTag为True表示该节点的左指针是索引,RLag为true表示该节点的右指针是索引,反之不是索引。

代码

main.cpp

/*
Project name :			_24Threaded_BinaryTree
Last modified Date:		2023年11月28日17点06分
Last Version:			V1.0
Descriptions:			线索二叉树
*/
#include "inThreadedBinaryTreeChains.h"
int main() {inThreadedBinaryTreeChainsTest();return 0;
}

inThreadedBinaryTreeChains.h

/*
Project name :			_24Threaded_BinaryTree
Last modified Date:		2023年11月28日17点06分
Last Version:			V1.0
Descriptions:			线索二叉树链表表示
*/#ifndef _24THREADED_BINARYTREE_INTHREADEDBINARYTREE_H
#define _24THREADED_BINARYTREE_INTHREADEDBINARYTREE_H
#include <iostream>
#include "binaryTree.h"
#include "inThreadedBinaryTreeNode.h"
using namespace std;
/*二叉树基础测试函数*/
void inThreadedBinaryTreeChainsTest();
template<class E>
class inThreadedBinaryTreeChains : public binaryTree<inThreadedBinaryTreeNode<E>>
{
public:/*二叉树的基础成员函数*//*构造函数函数*/inThreadedBinaryTreeChains() {root = nullptr; treeSize = 0;}/*析构函数*/~inThreadedBinaryTreeChains() { erase(); }/*当树为空时,返回true;否则,返回false*/bool empty() const { return treeSize == 0; }/*返回元素个数*/int size() const { return treeSize; }void inOrderThreaded()  // 中序遍历索引,就是中序遍历的时候添加索引{pre = nullptr;inOrderThreaded(root);}/*中序遍历二叉树,使用函数指针的目的是是的本函数可以实现多种目的*/void inOrder(void(*theVisit)(inThreadedBinaryTreeNode<E>*)){visit = theVisit;/*是因为递归,所以才要这样的*/inOrder(root);/*这里调用的是静态成员函数inOrder()*/}/*中序遍历---输出endl*/void inOrderOutput() { inOrder(output); cout << endl; }/*后续遍历二叉树,使用函数指针的目的是是的本函数可以实现多种目的*/void postOrder(void(*theVisit)(inThreadedBinaryTreeNode<E>*)){visit = theVisit;/*是因为递归,所以才要这样的*/postOrder(root);/*这里调用的是静态成员函数inOrder()*/}/*后序遍历---输出endl*/void postOrderOutput() { postOrder(output); cout << endl; }/*清空二叉树 这里必须使用后序遍历 不然会出错*/void erase(){postOrder(dispose);root = nullptr;treeSize = 0;}/*输入时为了将root根节点传递给createBiTree()函数*/void input(void){createBiTree(root);}
private:
/*二叉树基础私有成员*/inThreadedBinaryTreeNode<E>* root;//指向根的指针int treeSize;//树的结点个数static inThreadedBinaryTreeNode<E>* pre;// 在线索化时使用的前驱tempstatic void (*visit)(inThreadedBinaryTreeNode<E>*);//是一个函数指针,返回值为void 函数参数为binaryTreeNode<E>*static void inOrder(inThreadedBinaryTreeNode<E>* t);static void inOrderThreaded(inThreadedBinaryTreeNode<E>* t);// 中序遍历索引,就是中序遍历的时候添加索引static void postOrder(inThreadedBinaryTreeNode<E>* t);static void dispose(inThreadedBinaryTreeNode<E>* t) { delete t; }static void output(inThreadedBinaryTreeNode<E>* t) { cout << t->element << " "; }/*创建二叉树---递归---作为私有成员只能被成员函数调用*/void createBiTree(inThreadedBinaryTreeNode<E>*& tree);
};
/*私有静态成员初始化*/
/*这里是静态函数指针成员的初始化,不初始化会引发LINK错误*/
template<class E>
void (*inThreadedBinaryTreeChains<E>::visit)(inThreadedBinaryTreeNode<E>*) = 0;      // visit function
// 这个地方需要做一个初始化,不做的话就会bug
template<class E>
inThreadedBinaryTreeNode<E>* inThreadedBinaryTreeChains<E>:: pre = nullptr;
/*中序遍历 递归*/
/*不受索引影响的中序遍历*/
template<class E>
void inThreadedBinaryTreeChains<E>::inOrder(inThreadedBinaryTreeNode<E>* t)
{if (t != nullptr){// 在其左孩子不是索引时遍历if(!t->LTag)inOrder(t->leftChild);/*中序遍历左子树*/visit(t);/*访问树根*/// 在其右孩子不是索引时遍历if(!t->RTag)inOrder(t->rightChild);/*中序遍历右子树*/}
}
/*中序遍历索引 递归*/
/*本文写法可以保证在多次调用此函数下依然能正常执行,当插入新元素后再执行本函数可更新节点的索引*/
template<class E>
void inThreadedBinaryTreeChains<E>::inOrderThreaded(inThreadedBinaryTreeNode<E>* t)
{if (t != nullptr){if(!t->LTag)inOrderThreaded(t->leftChild);/*中序遍历左子树*/if(!t->leftChild || t->LTag) // 没有左孩子,或者是第二次遍历即左孩子指向了他的前驱{t->LTag = true;t->leftChild = pre;}if(pre){if(!pre->rightChild || t->RTag)  // 如果前驱没有右孩子,或者是第二次遍历即右孩子指向了它的后继{pre->RTag = true;pre->rightChild = t;}}pre = t;if(!t->RTag)inOrderThreaded(t->rightChild);/*中序遍历右子树*/}
}
/*后序遍历 递归*/
/*不受索引影响的后序遍历*/
template<class E>
void inThreadedBinaryTreeChains<E>::postOrder(inThreadedBinaryTreeNode<E>* t)
{if (t != nullptr){// 在其左孩子不是索引时遍历if(!t->LTag)postOrder(t->leftChild);/*后序遍历左子树*/// 在其右孩子不是索引时遍历if(!t->LTag)postOrder(t->rightChild);/*后序遍历右子树*/visit(t);/*访问树根*/}
}/*创建二叉树---递归---模板的实现*/
template<class E>
void inThreadedBinaryTreeChains<E>::createBiTree(inThreadedBinaryTreeNode<E>*& tree)
{E data;cout << "Please enter the tree element:";while (!(cin >> data)){cin.clear();//清空标志位while (cin.get() != '\n')//删除无效的输入continue;cout << "Please enter the tree element:";}cin.get();/*针对char类型的特例*/if (typeid(data) == typeid(char)) {if (data == '#')tree = nullptr;else {treeSize++;tree = new inThreadedBinaryTreeNode<E>(data);createBiTree(tree->leftChild);createBiTree(tree->rightChild);}}else/*针对其他类型*/{if (data == 999)tree = nullptr;//当遇到999时,令树的根节点为nullptr,从而结束该分支的递归else{treeSize++;tree = new inThreadedBinaryTreeNode<E>(data);createBiTree(tree->leftChild);createBiTree(tree->rightChild);}}
}
#endif //_24THREADED_BINARYTREE_INTHREADEDBINARYTREE_H

inThreadedBinaryTreeChains.cpp

/*
Project name :			_24Threaded_BinaryTree
Last modified Date:		2023年11月28日17点06分
Last Version:			V1.0
Descriptions:			线索二叉树测试函数
*/
#include "inThreadedBinaryTreeChains.h"
void inThreadedBinaryTreeChainsTest(){cout << endl << "******************************inThreadedBinaryTreeChains()函数开始**********************************" << endl;cout << endl << "测试成员函数*******************************************" << endl;cout << "输入****************************" << endl;cout << "默认构造函数********************" << endl;inThreadedBinaryTreeChains<int> a;a.input();cout << "输出****************************" << endl;cout << "中序输出************************" << endl;//递归遍历a.inOrderThreaded();cout << "a.inOrderOutput() = ";a.inOrderOutput();cout << "后序输出************************" << endl;a.inOrderThreaded();cout << "a.postOrderOutput() = ";a.postOrderOutput();cout << "empty()*************************" << endl;cout << "a.empty() = " << a.empty() << endl;cout << "size()**************************" << endl;cout << "a.size() = " << a.size() << endl;cout << "erase()**************************" << endl;a.erase();cout << "a.inOrderOutput() = ";a.inOrderOutput();cout << "******************************inThreadedBinaryTreeChains()函数结束**********************************" << endl;
}

binaryTree.h

/*
Project name :			allAlgorithmsTest
Last modified Date:		2022年8月27日09点43分
Last Version:			V1.0
Descriptions:			二叉树的抽象类
*/#ifndef _24THREADED_BINARYTREE_BINARYTREE_H
#define _24THREADED_BINARYTREE_BINARYTREE_H
template<class T>
class binaryTree
{
public:virtual ~binaryTree() {}virtual bool empty() const = 0;virtual int size() const = 0;
//    virtual void preOrder(void (*)(T*)) = 0;virtual void inOrder(void (*)(T*)) = 0;virtual void postOrder(void (*)(T*)) = 0;
//    virtual void levelOrder(void (*)(T*)) = 0;
};
#endif //_24THREADED_BINARYTREE_BINARYTREE_H

inThreadedBinaryTreeNode.h

/*
Project name :			_24Threaded_BinaryTree
Last modified Date:		2023年11月28日17点06分
Last Version:			V1.0
Descriptions:			线索二叉树节点结构体
*/#ifndef _24THREADED_BINARYTREE_INTHREADEDBINARYTREENODE_H
#define _24THREADED_BINARYTREE_INTHREADEDBINARYTREENODE_H
template<class T>
struct inThreadedBinaryTreeNode
{T element;inThreadedBinaryTreeNode<T>* leftChild,//左子树*rightChild;//右子树bool LTag, RTag;// 左右子树指针是否为索引,为True则是索引,否则不是索引/*默认构造函数*/inThreadedBinaryTreeNode() { leftChild = rightChild = nullptr; LTag = RTag = false;}/*只初始化element*/inThreadedBinaryTreeNode(T melement){element = melement;leftChild = rightChild = nullptr;LTag = RTag = false;}/*三个元素都初始化*/inThreadedBinaryTreeNode(T melement, inThreadedBinaryTreeNode<T>* mleftChild, inThreadedBinaryTreeNode<T>* mrightChild){element = melement;leftChild = mleftChild;rightChild = mrightChild;LTag = RTag = false;}
};
#endif //_24THREADED_BINARYTREE_INTHREADEDBINARYTREENODE_H

测试

"C:\Users\15495\Documents\Jasmine\prj\_Algorithm\Data Structures, Algorithms and Applications in C++\_24Threaded BinaryTree\cmake-build-debug\_24Threaded_BinaryTree.exe"******************************inThreadedBinaryTreeChains()函数开始**********************************测试成员函数*******************************************
输入****************************
默认构造函数********************
Please enter the tree element:1
Please enter the tree element:2
Please enter the tree element:999
Please enter the tree element:999
Please enter the tree element:3
Please enter the tree element:999
Please enter the tree element:999
输出****************************
中序输出************************
a.inOrderOutput() = 2 1 3
后序输出************************
a.postOrderOutput() = 2 3 1
empty()*************************
a.empty() = 0
size()**************************
a.size() = 3
erase()**************************
a.inOrderOutput() =
******************************inThreadedBinaryTreeChains()函数结束**********************************Process finished with exit code 0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/227742.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Webshell混淆免杀的一些思路

简介 为了避免被杀软检测到&#xff0c;黑客们会对Webshell进行混淆免杀。本文将介绍一些Webshell混淆免杀的思路&#xff0c;帮助安全人员更好地防范Webshell攻击。静态免杀是指通过对恶意软件进行混淆、加密或其他技术手段&#xff0c;使其在静态分析阶段难以被杀毒软件或安全…

linux 安装 mvn

mvn 下载地址&#xff1a;https://maven.apache.org/download.cgi 选择一个合适的版本 cd /opt && curl -o apache-maven-3.8.6-bin.tar.gz https://dlcdn.apache.org/maven/maven-3/3.8.6/binaries/apache-maven-3.8.6-bin.tar.gz tar -xzf apache-maven-3.8.6-bin.…

【EI会议投稿】第四届物联网与智慧城市国际学术会议(IoTSC 2024)

第四届物联网与智慧城市国际学术会议 2024 4th International Conference on Internet of Things and Smart City 继IoTSC前三届的成功举办&#xff0c;第四届物联网与智慧城市国际学术会议&#xff08;IoTSC 2024&#xff09;将于2024年3月22-24日在河南洛阳举办。 智慧城市的…

常见面试题-Redis 切片集群以及主节点选举机制

Redis 切片集群了解吗&#xff1f; 答&#xff1a; Redis 切片集群是目前使用比较多的方案&#xff0c;Redis 切面集群支持多个主从集群进行横向扩容&#xff0c;架构如下&#xff1a; 使用切片集群有什么好处&#xff1f; 提升 Redis 读写性能&#xff0c;之前的主从模式中&…

Python---lambda表达式

普通函数与匿名函数 在Python中&#xff0c;函数是一个被命名的、独立的完成特定功能的一段代码&#xff0c;并可能给调用它的程序一个返回值。 所以在Python中&#xff0c;函数大多数是有名函数 > 普通函数。但是有些情况下&#xff0c;我们为了简化程序代码&#xff0c;…

Android : Fragment 传递数据 — 简单应用

示例图&#xff1a; 创建 Fragment new -> Fragment -> Fragment&#xff08;Blank&#xff09; MainActivity.java package com.example.fragmentdemo;import androidx.appcompat.app.AppCompatActivity; import androidx.fragment.app.FragmentManager; import andro…

00.本地搭建 threejs 文档网站(网页版是外网比较慢)

three官网 https://threejs.org/ 下载代码 进入官网 可以选择github去下载 或者 下载压缩包 github 下载https链接地址 https://github.com/mrdoob/three.js.git git clone https://github.com/mrdoob/three.js.git安装依赖启动程序 安装依赖 npm i 或者 pnpm i 或者 …

GUI加分游戏

需求目标 这个简单的游戏窗口包含一个得分标签和一个按钮。每次点击按钮时&#xff0c;得分增加1&#xff0c;并更新得分标签的显示。 效果 源码 /*** author lwh* date 2023/11/28* description 这个简单的游戏窗口包含一个得分标签和一个按钮。每次点击按钮时&#xff0c;…

带残差连接的ResNet18

目录 1 模型构建 1.1 残差单元 1.2 残差网络的整体结构 2 没有残差连接的ResNet18 2.1 模型训练 2.2 模型评价 3 带残差连接的ResNet18 3.1 模型训练 3.2 模型评价 4 与高层API实现版本的对比实验 总结 残差网络&#xff08;Residual Network&#xff0c;ResNet&#xff09;…

YOLOv5算法进阶改进(5)— 主干网络中引入SCConv | 即插即用的空间和通道维度重构卷积

前言:Hello大家好,我是小哥谈。SCConv是一种用于减少特征冗余的卷积神经网络模块。相对于其他流行的SOTA方法,SCConv可以以更低的计算成本获得更高的准确率。它通过在空间和通道维度上进行重构,从而减少了特征图中的冗余信息。这种模块的设计可以提高卷积神经网络的性能。�…

使用STM32 HAL库驱动光电传感器的设计和优化

光电传感器在许多应用中起着重要的作用&#xff0c;例如自动计数、距离测量等。STM32微控制器和HAL库提供了丰富的功能和易于使用的接口&#xff0c;使得光电传感器的设计和优化变得更加便捷。本文将介绍如何使用STM32 HAL库驱动光电传感器的设计和优化&#xff0c;包括硬件设计…

【前端首屏加载速度优化(一) :nginx 开启gzip压缩】

开启gzip压缩前后对比&#xff1a; nginx.conf具体配置&#xff1a; server {# 启动后的端口listen 8882;# 开启gzip压缩gzip on;gzip_min_length 1k; gzip_buffers 4 16k; gzip_http_version 1.1; gzip_comp_level 6; gzip_types text/plain application/x-javascript…