智能优化算法应用:基于头脑风暴算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于头脑风暴算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于头脑风暴算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.头脑风暴算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用头脑风暴算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.头脑风暴算法

头脑风暴算法原理请参考:https://blog.csdn.net/u011835903/article/details/108291102
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

头脑风暴算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明头脑风暴算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/228401.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Jmeter和Testlink自动化测试框架研究与实施

摘 要 目前基于Jmeter的接口自动化测试框架,大多只实现脚本维护和自动调度,无法与Testlink进行互通,实现测试方案与自动化实施流程连接,本文基于Testlink、Jmeter、Jenkins实现:通过Testlink统一维护接口自动化测试用…

IDEA 配置 gradle6.8.3 解决导入gradle项目下载太慢问题

由于平时用的是springboot 2.7 这里下载gradle-6.8.3 Gradle官网地址:https://services.gradle.org/distributions/ 1.下载gradle后,配置环境变量 GRADLE_HOME {gradle 文件路径} GRADLE_USER_HOME {jar下载路径,可以放maven jar保存路径…

Ubuntu20.04部署TVM流程及编译优化模型示例

前言:记录自己安装TVM的流程,以及一个简单的利用TVM编译模型并执行的示例。 1,官网下载TVM源码 git clone --recursive https://github.com/apache/tvmgit submodule init git submodule update顺便完成准备工作,比如升级cmake版本…

DockerCompose修改某个服务的配置(添加或编辑端口号映射)后如何重启单个服务使其生效

场景 docker-compose入门以及部署SpringBootVueRedisMysql(前后端分离项目)以若依前后端分离版为例: docker-compose入门以及部署SpringBootVueRedisMysql(前后端分离项目)以若依前后端分离版为例_docker-compose部署java mysql redis-CSDN博客 上面讲了docker c…

【Vue】【uni-app】实现发起工单页面

修改了上次的导航栏为二级导航 <template><view class"leftNav"><div class"logo">显鹅易见</div><uni-collapse class"item" accordion"true"><uni-collapse-item title"养殖场总部">…

多线程(补充知识)

STL库&#xff0c;智能指针和线程安全 STL中的容器是否是线程安全的? 不是. 原因是, STL 的设计初衷是将性能挖掘到极致, 而一旦涉及到加锁保证线程安全,会对性能造成巨大的影响. 而且对于不同的容器, 加锁方式的不同, 性能可能也不同(例如hash表的锁表和锁桶). 因此 STL 默认…

基于LNMP快速搭建WordPress平台

目录 1 LNMP简介 2 WordPress简介 3 安装MySQL环境 3.1 安装MySQL 3.1.1 下载wget工具 3.1.2 下载MySQL官方yum源安装包 3.1.3 安装MySQL官方yum源 3.1.4 mysql安装 3.2 启动MySQL 3.3 获取默认密码 3.4 登录MySQL ​ 3.5 修改密码 3.6 创建WordPress数据库并授权 3.6.1 创…

医疗影像数据集—CT、X光、骨折、阿尔茨海默病MRI、肺部、肿瘤疾病等图像数据集

最近收集了一大波关于CT、X光等医疗方面的数据集包含骨折、阿尔茨海默病MRI、肺部疾病等类型的医疗影像数据&#xff0c;废话不多说&#xff0c;给大家逐一介绍&#xff01;&#xff01; 1、彩色预处理阿尔茨海默病MRI(磁共振成像)图像数据集 彩色预处理阿尔茨海默病MRI(磁共…

【沐风老师】3DMAX拼图建模工具MaxPuzzle2D插件使用方法详解

MaxPuzzle2D拼图建模工具使用帮助 MaxPuzzle2D拼图建模工具&#xff0c;拼图建模“彩虹系列”插件&#xff0c;是一款用MAXScript脚本语言开发的3dMax拼图建模小工具&#xff0c;可以创建2D或3D的拼图图形阵列。这让需要拼图建模的设计师大大节省了时间。 MaxPuzzle2D工具界面&…

电荷泵升压/降压电路

一、升压\降压电路原理分析 1、升压电路 电荷泵升压电路 VoutVa5V 5V_PLUS0V时&#xff0c;Va给C2充电&#xff0c;C2上节点电压比C2下节点电压高Va&#xff1b; 5V_PLUS5V时&#xff0c;C2电压不能突变&#xff0c;C2上节点电压依然比C2下节点电压高Va&#xff0c;但C2下节点…

C++单调向量(栈):好子数组的最大分数

作者推荐 利用广度优先或模拟解决米诺骨牌 题目 给你一个整数数组 nums &#xff08;下标从 0 开始&#xff09;和一个整数 k 。 一个子数组 (i, j) 的 分数 定义为 min(nums[i], nums[i1], …, nums[j]) * (j - i 1) 。一个 好 子数组的两个端点下标需要满足 i < k <…

STM32之模数转换器ADC

目录 1、ADC介绍 1.什么是ADC&#xff1f; ADC的全称是Analog-to-Digital Converter&#xff0c;指模拟/数字转换器 2.ADC的性能指标 3.ADC特性 12位分辨率 4.ADC通道 5.ADC转换顺序 6.ADC触发方式 7.ADC转化时间 8.ADC转化模式 9.模拟看门狗 实验&#xff1a;使用ADC读…