智能优化算法应用:基于混合蛙跳算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于混合蛙跳算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于混合蛙跳算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.混合蛙跳算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用混合蛙跳算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.混合蛙跳算法

混合蛙跳算法原理请参考:https://blog.csdn.net/u011835903/article/details/108294230
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

混合蛙跳算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明混合蛙跳算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/228791.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Kubernetes Pod 介绍

文章目录 🔊博主介绍🥤本文内容Pod 介绍与原理讲解Pod 生命周期管理Pod 的健康检查 📢文章总结📥博主目标 🔊博主介绍 🌟我是廖志伟,一名Java开发工程师、Java领域优质创作者、CSDN博客专家、51…

记录Windows下安装redis的过程

开源博客项目Blog支持使用EasyCaching组件操作redis等缓存数据库,在继续学习开源博客项目Blog之前,准备先学习redis和EasyCaching组件的基本用法,本文记录在Windows下安装redis的过程。   虽然redis官网文档写着支持Linux、macOS、Windows等…

uniapp中进行地图定位

目录 一、创建map 二、data中声明变量 三、获取当前位置信息&#xff0c;进行定位 四、在methods中写移动图标获取地名地址的方法 五、最终展示效果 一、创建map <!-- 地图展示 --><view class"mymap"><!-- <view class"mymap__map"…

【.NET全栈】.net的微软API接口与.NET框架源码

文章目录 0 前言1 微软官方.net接口学习2 .NET框架源码总结 0 前言 如果浏览器打不开链接&#xff0c;换一个浏览器打开。 我是 打不开微软的链接&#xff0c;使用&#xff1a; 可以打开&#xff01;&#xff01;&#xff01; 1 微软官方.net接口学习 https://docs.microsoft…

使用项目管理工具进行新媒体运营管理的策略与方法

使用Zoho Projects项目管理工具&#xff0c;新媒体运营可轻松驾驭从策划选题、撰写到排期发布的全流程。运用项目管理工具对新媒体运营进行精细化管理&#xff0c;助力团队更高效地规划、执行和追踪各项任务与活动。 以下是运用项目管理工具管理新媒体运营的妙招&#xff1a; 1…

webpack具体实现--未完

1、前端模块打包工具webpack webpack 是 Webpack 的核心模块&#xff0c;webpack-cli 是 Webpack 的 CLI 程序&#xff0c;用来在命令行中调用 Webpack。webpack-cli 所提供的 CLI 程序就会出现在 node_modules/.bin 目录当中&#xff0c;我们可以通过 npx 快速找到 CLI 并运行…

蓝桥杯每日一题2023.11.28

题目描述 三羊献瑞 - 蓝桥云课 (lanqiao.cn) 题目分析 本题首先进行观察可以确定 1.“三”为 1 &#xff08;十进制数字要进位进一位&#xff09; 2.“祥”一定不为 0 &#xff08;有前导0就不能算为 4 位数&#xff09; 使用搜索时将其特判 #include<bits/stdc.h> …

人工智能_机器学习053_支持向量机SVM目标函数推导_SVM条件_公式推导过程---人工智能工作笔记0093

然后我们再来看一下支持向量机SVM的公式推导情况 来看一下支持向量机是如何把现实问题转换成数学问题的. 首先我们来看这里的方程比如说,中间的黑线我们叫做l2 那么上边界线我们叫l1 下边界线叫做l3 如果我们假设l2的方程是上面这个方程WT.x+b = 0 那么这里 我们只要确定w和…

C/C++ 发送与接收HTTP/S请求

HTTP&#xff08;Hypertext Transfer Protocol&#xff09;是一种用于传输超文本的协议。它是一种无状态的、应用层的协议&#xff0c;用于在计算机之间传输超文本文档&#xff0c;通常在 Web 浏览器和 Web 服务器之间进行数据通信。HTTP 是由互联网工程任务组&#xff08;IETF…

rss服务搭建记录

layout: post title: RSS subtitle: vps搭建RSS服务 date: 2023-11-27 author: Sprint#51264 header-img: img/post-bg-universe.jpg catalog: true tags: - 折腾 文章目录 引言RSShub-dockerRSS-radarFreshrssFluent reader获取fever api配置Fluent Reader同步 结语 引言 一个…

搭建一个可以发送邮箱验证码的接口,内含前端处理 接口返回、请求处理

环境搭建 在node安装好的情况下&#xff08;一般vue环境有的node也有 没有可以使用winr回车输入node -v 有版本号则已经安装好 找一个空文件夹作为此项目文件夹 点击上面的地址栏输入cmd回车 输入npm init -y 再输入npm install nodemailer安装发送邮件的插件 环境配置 使用v…

如何恢复已删除的照片 ?适用于 Windows 的Android 数据恢复软件值得尝试

“我丢失了 Android 手机上的照片&#xff0c;有人告诉我使用恢复程序来找回所有手机数据。我使用的是 Windows 10 和华为 手机&#xff0c;对于 Windows最有效的 Android 数据恢复是什么&#xff1f;” Android 恢复程序用于检索丢失或删除的文件&#xff0c;如照片、联系人、…