【Python】数据分析案例:世界杯数据可视化 | 文末送书

文章目录

每一场体育赛事都会产生大量数据,这些数据可用于分析运动员、球队表现以及比赛中的亮点。作为分析案例,我们使用T20世界杯的数据进行分析。如果你有兴趣学习如何分析类似T20世界杯这样的体育赛事,本文将为您提供指导。在本文中,我们将使用 Python 来分析 2022年T20世界杯的数据。

前期数据准备

我们使用的数据集主要的关键数据信息如下,具体数据可以直接下载原始数据进行查看:

  • venue(比赛场馆): 比赛举行的地点
  • team1(先发击球队伍): 先发击球的队伍
  • team2(后发击球队伍): 后发击球的队伍
  • stage(比赛阶段): 比赛的阶段(超级12、半决赛或决赛)
  • toss winner(赢得抛硬币的队伍): 赢得抛硬币的队伍
  • toss decision(赢得抛硬币后队长的决策): 队长在赢得抛硬币后的决策
  • first innings score(第一局得分): 第一局得分
  • first innings wickets(第一局失去的击球员数): 第一局失去的击球员数
  • second innings score(第二局得分): 第二局得分
  • second innings wickets(第二局失去的击球员数): 第二局失去的击球员数
  • winner(赢得比赛的队伍): 获胜的队伍
  • won by(赢得比赛的方式): 队伍获胜的方式(击球员数或得分数)
  • player of the match(比赛最佳球员): 比赛的最佳球员
  • top scorer(比赛中得分最高的球员): 比赛中得分最高的球员
  • highest score(比赛中某球员获得的最高得分): 比赛中由球员得到的最高得分
  • best bowler(比赛中取得最多击球员的球员): 比赛中取得最多击球员的球员
  • best bowling figure(最佳投手在比赛中取得的击球员数和失去的得分数): 最佳投手在比赛中取得的击球员数和失去的得分数

在这里插入图片描述

原始数据下载:文末公众号回复D01即可下载。

导入数据

使用如下的代码进行导入数据,主要使用的 Package 是 Python 的 pandas

import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import plotly.io as piopio.templates.default = "plotly_white"data = pd.read_csv("data\\t20-world-cup-22.csv")
print(data.head())

打印的数据内容如下:

PyDev console: starting.
Python 3.8.8 (tags/v3.8.8:024d805, Feb 19 2021, 13:18:16) [MSC v.1928 64 bit (AMD64)] on win32
...venue        team1  ...         best bowler best bowling figure
0               SCG  New Zealand  ...         Tim Southee                 3-6
1     Optus Stadium  Afghanistan  ...          Sam Curran                5-10
2  Blundstone Arena      Ireland  ...  Maheesh Theekshana                2-19
3               MCG     Pakistan  ...       Hardik Pandya                3-30
4  Blundstone Arena   Bangladesh  ...        Taskin Ahmed                4-25
[5 rows x 17 columns]

分析:世界杯中各队赢得的比赛数

现在让我们来看一看每支球队在世界杯中赢得的比赛数量:

figure = px.bar(data,x=data["winner"],title="2022年T20世界杯中各队赢得的比赛数")
figure.show()

最后生成的图表:

在这里插入图片描述
从图表中可以看出,获胜次数最多的是英格兰,他们赢得了五场比赛。而巴基斯坦和印度都赢得了4场比赛。

分析:先打或后打的比赛获胜次数

现在让我们来看一看在2022年T20世界杯中,先打或后打的比赛获胜次数:

won_by = data["won by"].value_counts()
label = won_by.index
counts = won_by.values
colors = ['#004c6d','#c1e7ff']fig = go.Figure(data=[go.Pie(labels=label, values=counts)])
fig.update_layout(title_text='比赛胜利次数按得分或击球数来计算')
fig.update_traces(hoverinfo='label+percent', textinfo='value', textfont_size=30,marker=dict(colors=colors, line=dict(color='black', width=3)))
fig.show()

在这里插入图片描述

图表分析可知,在2022年T20世界杯中,有16场比赛是由先打的一方获胜,而有13场比赛是由追击的一方获胜。

分析:世界杯中的抛硬币决策

现在,让我们来看一看各支球队在世界杯中的抛硬币决策:

toss = data["toss decision"].value_counts()
label = toss.index
counts = toss.values
colors = ['skyblue','yellow']fig = go.Figure(data=[go.Pie(labels=label, values=counts)])
fig.update_layout(title_text='2022年T20世界杯中的抛硬币决策')
fig.update_traces(hoverinfo='label+percent', textinfo='value', textfont_size=30,marker=dict(colors=colors, line=dict(color='black', width=3)))
fig.show()

在这里插入图片描述

图表分析可知,在17场比赛中,球队选择了先打,而在13场比赛中,球队选择了先防守。

分析:2022年T20世界杯的最高得分者

现在让我们来看一看2022年T20世界杯中的最高得分者:

代码示例:

figure = px.bar(data,x=data["top scorer"],y = data["highest score"],color = data["highest score"],title="2022年T20世界杯的最高得分者")
figure.show()

在这里插入图片描述

从上述柱状图表中可以看到Virat Kohli在3场比赛中得分最高。毫无疑问,他是2022年T20世界杯中最出色的击球手。

分析:世界杯比赛最佳球员奖

现在让我们来看一看世界杯中的最佳球员奖次数:

代码示例如下:

figure = px.bar(data,x = data["player of the match"],title="世界杯比赛最佳球员奖")
figure.show()

在这里插入图片描述

在图表中可以直观的看出,以下是在比赛结束时获得最佳投球数据的投手:

  1. Virat Kohli - 2场比赛中获得最佳投手奖。
  2. Sam Curran - 2场比赛中获得最佳投手奖。
  3. Taskin Ahmed - 2场比赛中获得最佳投手奖。
  4. Suryakumar Yadav - 2场比赛中获得最佳投手奖。
  5. Shadab Khan - 2场比赛中获得最佳投手奖。

以上球员在两场比赛中获得了最佳投手奖,没有球员在超过两场比赛中获得该奖项。

分析:最适合先击球或追逐的球场

接下来让我们比较一下2022年T20世界杯每个球场的第一次和第二次跑分情况:

fig = go.Figure()
fig.add_trace(go.Bar(x=data["venue"],y=data["first innings score"],name='First Innings Runs',marker_color='#003f5c'
))
fig.add_trace(go.Bar(x=data["venue"],y=data["second innings score"],name='Second Innings Runs',marker_color='#c1e7ff'
))
fig.update_layout(barmode='group',xaxis_tickangle=-45,title="最适合先击球或追逐的球场")
fig.show()

在这里插入图片描述

最后根据图表分析可以得出 :SCG 球场的投球条件以先发制人更有利而闻名,这就是为什么许多球队在2019年世界杯期间更喜欢在该球场先发制人的原因。然而,应该注意到这种优势可能会因天气条件和投手的表现等因素而有所不同。

接下来进行比较一下2022年T20世界杯每个球场的第一次和第二次失去的球数:

fig = go.Figure()
fig.add_trace(go.Bar(x=data["venue"],y=data["first innings wickets"],name='First Innings Wickets',marker_color='blue'
))
fig.add_trace(go.Bar(x=data["venue"],y=data["second innings wickets"],name='Second Innings Wickets',marker_color='red'
))
fig.update_layout(barmode='group',xaxis_tickangle=-45,title="最适合先发球或后手防守的球场")
fig.show()

从下表中可以看出:SCG 是最适合在防守目标时投球的球场,而 Optus 体育场则是最适合先发球的球场。

在这里插入图片描述

案例分析总结

从我们的分析中,我们发现了2022年T20世界杯的一些亮点:

  • 英格兰赢得了最多的比赛场次
  • Virat Kohli 在最多场比赛中得分最高
  • Sam Curran 是在最多场比赛中表现最好的投手
  • 更多的球队通过先发制人获胜
  • 更多的球队选择先发制人
  • SCG 是最适合先发制人的球场
  • SCG 是世界杯中最适合防守目标的球场
  • Optus 体育场是最适合先发球的球场

希望你喜欢这篇关于使用 Python 进行 2022年T20世界杯分析的文章。

如果有任何有价值的问题,请随时在下方评论区提问。

文末送书《Pandas数据分析》

本书详细阑述了与Pandas数据分析相关的基本解决方案,主要包括数据分析导论、使用PandasDataFrame、使用Pandas进行数据整理、聚合PandasDataFrame、使用Pandas和Matplotlib可视化数据、使用Seaborn和自定义技术绘图、金融分析、基于规则的异常检测、Python机器学习入门、做出更好的预测、机器学习异常检测等内容。此外,本书还提供了相应的示例、代码,以帮助读者进一步理解相关方案的实现过程。

  • 京东官方购买链接:https://item.jd.com/14065178.html

在这里插入图片描述

送书参与方式

图书数量:下方名片内小程序直接抽奖送出 1 本《Pandas数据分析》 !

活动时间:截止到 2023/11/15 21:00:00

🏆抽奖方式:

⭐️⭐️点击下方名片,点击菜单抽奖,即可参与(如下图)⭐️⭐️

🏆会在 CSDN 动态公布中奖名单。

名单公布时间:2023/11/16 21:10:00

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/229539.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用React+SpringBoot开发一个协同编辑的表格文档

本文由葡萄城技术团队发布。转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具、解决方案和服务,赋能开发者。 前言 随着云计算和团队协作的兴起,协同编辑成为了许多企业和组织中必不可少的需求。通过协同编辑&#x…

重温 re:Invent,分享十年成长:我和 re:Invent的故事

文章目录 前言背景我和re:Invent的交际历届峰会主题2012 突破技术垄断2013 革新数据服务2014 更好用的云服务2015 打通最后一-公里2016 迈向云上数据湖时代2017 重构云计算基础2018 云能力的再进化2019 赋能企业云架构服务2020 推动行业数据库服务的演进2021 无可比拟的云架构2…

Ultipa参加国际科学会议KGSWC2023

近日,领先的国际科学会议 KGSWC 2023,在西班牙萨拉戈萨大学召开,Ultipa Graph参加。 KGSWC2023是第五届伊比利亚-美洲会议和第四届印度-美洲知识图谱与语义网大会的联合论坛。自2019年成立以来,KGSWC一直是一个重要的学术活动&am…

FL Studio水果软件21.1新版!新增Hyper Chorus插件及自动更新功能

我们很高兴地宣布在去年12月发布重大版本更新后,FL Studio在2023年8月正式更新到21.1版。本次更新虽然只是维护性质,但我们还是为大家带来了一些全新的功能,包括通过钢琴卷中的音阶捕捉和自定义音符工具,引入更快、更有创意的音符…

HassOS使用nmcli设置静态IPv4地址及网关、DNS

目录 显示hass在使用的默认连接显示此连接的所有配置编辑hass默认连接添加静态IP地址添加DNS和网关删除DNS查看IPv4属性保存配置并退出nmcli重载配置 首先控制台登陆Home Assistant OS Welcome to Home Assistant homeassistant login:使用root用户登录(无需密码&a…

JavaScript基础—for语句、循环嵌套、、数组、操作数组、综合案例—根据数据生成柱形图、冒泡排序

版本说明 当前版本号[20231129]。 版本修改说明20231126初版20231129完善部分内容 目录 文章目录 版本说明目录JavaScript 基础第三天笔记for 语句for语句的基本使用循环嵌套倒三角九九乘法表 数组数组是什么?数组的基本使用定义数组和数组单元访问数组和数组索引…

使用vue-admin-template时,需要注意的问题,包括一定要去除mock.js注释

在使用vue-admin-template等前端框架时,如果你没有打算用他们的mock数据,在生产环境下一定要注释mock引用的代码,虽然它没有被调用,但是如果你不注释,就会被打包进去。 找到main.js,看如下代码&#xff1a…

Python内置类属性`__name__`属性的使用教程

更多Python学习内容:ipengtao.com Python中的__name__是一种内置的特殊属性,通常用于判断模块是作为主程序运行还是作为模块被导入。本文将深入讲解__name__属性的用法,通过丰富的示例代码展示其在不同情景下的应用。 模块作为主程序运行 当一…

vscode 里怎么自动提示 webpack 配置项?

webpack 的配置项非常多,容易忘记,能自动提示很有用,就是在配置文件里面添加下面代码 // 下面这行用于 vscode 中智能化自动提示 webpack 配置项 /** type {import(webpack).Configuration} */

AI旅游:旅游行业的人工智能成熟艺术适应从实践到表现报告

今天分享的是AI系列深度研究报告:《AI旅游:旅游行业的人工智能成熟艺术适应从实践到表现报告》。 (报告出品方:accenture) 报告共计:25页 旅行还没有充分利用AI所能做的一 而旅游业比两年前强多了。公司…

SRGAN 使用指南:将低分辨率图像转换为高分辨率图像

SRGAN、ESRGAN、Real-ESRGAN 使用指南 SRGAN网络结构优化目标 ESRGANReal-ESRGAN SRGAN 超分辨率:从低分辨率(LR)图像来估计其对应高分辨率(HR)图像的任务,被称作超分辨率(SR)。 SRGAN 图像超分辨率的深度学习模型,通过生成对抗网络&#x…

如何在Python中操作Redis数据库

目录 一、安装redis-py库 二、连接Redis数据库 三、执行操作 1、设置和获取键值对 2、删除键值对 3、获取列表数据 四、处理数据 1、使用哈希表(Hash)处理关联数据 2、使用列表(List)处理有序数据 3、使用集合&#xff…