数据结构-二叉树(2)

3.4堆的应用

3.4.1 堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

1. 建堆

   1.升序:建大堆;

   2.降序:建小堆。

2. 利用堆删除思想来进行排序

这种写法有两个缺点:

 1、先有一个堆的数据结构
 2、空间复杂度复杂度的消耗

void HeapSort(int* a, int n)
{HP hp;HeapInit(&hp);for (int i = 0; i < n; i++){HeapPush(&hp, a[i]);}int i = 0;while (!HeapEmpty(&hp)){//printf("%d ", HeapTop(&hp));a[i++] = HeapTop(&hp);HeapPop(&hp);}HeapDestroy(&hp);
}

所以我们可以稍微改进一下,使得只要有一个数组就可以进行堆排序:

假设要排一个升序:

先使用向下调整的方式建一个大堆,然后再写一个循环,当end=0时结束循环,每次进入循环先交换首尾数据,然后从头开始进行向下调整,每次end--。

void AdjustDown(int* a,int n, int parent)
{int child = parent * 2 + 1;while(child < n){if (a[child] < a[child + 1] && child + 1 < n){child += 1;}if (a[child] > a[parent]){Swap(&a[parent], &a[child]);parent = child;child = parent * 2 + 1;}else{break;}}
}
void HeapSort(int* a, int n)
{//向下调整建堆for (int i = (n-1-1)/2; i >= n; i--){AdjustDown(a,n,i);}int end = n - 1;while (end > 0){Swap(&a[0], &a[end]);AdjustDown(a, end, 0);end--;}
}

3.4.2 TOP-K问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

1. 用数据集合中前K个元素来建堆
前k个最大的元素,则建小堆
前k个最小的元素,则建大堆

2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

 void PrintTopK(const char* filename, int k){// 1. 建堆--用a中前k个元素建堆FILE* fout = fopen(filename, "r");if (fout == NULL){perror("fopen fail");return;}int* minheap = (int*)malloc(sizeof(int) * k);if (minheap == NULL){perror("malloc fail");return;}for (int i = 0; i < k; i++){fscanf(fout, "%d", &minheap[i]);}// 前k个数建小堆for (int i = (k - 2) / 2; i >= 0; --i){AdjustDown(minheap, k, i);}// 2. 将剩余n-k个元素依次与堆顶元素交换,不满则则替换int x = 0;while (fscanf(fout, "%d", &x) != EOF){if (x > minheap[0]){// 替换你进堆minheap[0] = x;AdjustDown(minheap, k, 0);}}for (int i = 0; i < k; i++){printf("%d ", minheap[i]);}printf("\n");free(minheap);fclose(fout);}

4.二叉树链式结构的实现

4.1 前置说明

在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。
首先我们手动创建一个链式二叉树,链接完后的二叉树大概是这个样子。

再看二叉树基本操作前,再回顾下二叉树的概念,二叉树是:
1. 空树
2. 非空:根节点,根节点的左子树、根节点的右子树组成的。

从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。
 

typedef struct BinaryTreeNode
{struct BinaryTreeNode* left;struct BinaryTreeNode* right;int val;
}BTNode;
int main()
{BTNode* node1 = BuyListNode(1);BTNode* node2 = BuyListNode(2);BTNode* node3 = BuyListNode(3);BTNode* node4 = BuyListNode(4);BTNode* node5 = BuyListNode(5);BTNode* node6 = BuyListNode(6);node1->left = node2;node1->right = node4;node2->left = node3;node4->left = node5;node4->right = node6;
}

4.2二叉树的遍历

4.2.1 前序、中序以及后序遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

 按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历

1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。
由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

下面主要分析前序递归遍历,中序与后序图解类似:

前序,中序,后序遍历代码:

//前序 根 左子树 右子树
void PrevOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}printf("%d ", root->val);PrevOrder(root->left);PrevOrder(root->right);
}//中序 左子树 根 右子树
void InOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}InOrder(root->left);printf("%d ", root->val);InOrder(root->right);
}//右序 左子树 右子树 根
void PostOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->val);
}

前序遍历递归图解:

先访问根,在访问左子树,也就是先访问1,再访问1的左子树,1的左子树的根是2,所以再访问2,2的左子树还没有访问完,所以访问2的左子树的根3,再访问3的左子树NULL,到这里3的左子树访问完毕,开始访问3的右子树NULL,到这里3的右子树也访问完毕,开始访问2的右子树NULL......以此类推

 前序遍历递归展开图:

 

 中序和后序都是一样的过程,总之就是要把对应的左子树/右子树遍历到NULL才返回上一层。

4.3二叉树节点个数

这里也要把问题转化为递归的子问题,使用一个三目操作符,差不多是一个后序遍历,如果当前节点为NULL则返回0,不是NULL则返回他的左子树和右子树的节点个数加1,也就是自己这个节点。比方说要求以下二叉树的节点个数,后序就是从3的左子树NULL开始,节点3的左右子树都为空,则节点3返回0+0+1=1,再求节点2,节点2的左子树返回了1,右子树返回0,所以节点2返回1+0+1=2,以此类推1的右子树返回的是3,所以1这个根节点的返回值是2+3+1=6.

//节点个数
int TreeSize(BTNode* root)
{//后序return root == NULL ? 0 : TreeSize(root->left) + TreeSize(root->right) + 1;
}

4.4二叉树叶子节点个数

叶子节点就是没有左右子树的节点,所以进入函数先判断当前节点是否为NULL,如果是则返回0,再判断是否为叶子节点,左子树和右子树都为NULL才是叶子节点,返回1。如果两个if都未进入,说明当前节点至少有一个子节点,再写一个递归往下找,返回左右子树的全部叶子节点。

int TreeLeafSize(BTNode* root)
{//当前节点为空if (root == NULL)return 0;//左右子树为空,自己就是叶子if (root->left == NULL && root->right == NULL)return 1;//往下找return TreeLeafSize(root->left) + TreeLeafSize(root->right);
}

4.5二叉树第k层节点个数

要求第k层的节点个数,首先我们要知道一个思路,假设要求这个二叉树第3层的节点个数,那么第3层就相当于根节点1的第3层,根节点1的第三层又相当于2和4的第二层,2和4的第二层又相当于3,5,6的第一层,所以当k=1且不为空时,返回1即可。递归左右子树,每次k-1.

int TreeKLevel(BTNode* root, int k)
{assert(k > 0);if (root == NULL){return 0;}//走到最后一层if (k == 1){return 1;}//每次往下找一层return TreeKLevel(root->left, k - 1) + TreeKLevel(root->right, k - 1);
}

4.6二叉树查找值为x的节点

查找节点的话,首先判断当前节点是否满足val=x,如果满足直接返回当前节点,再判断是否为空,如果既不为空也不是要查找的节点则开始往左子树开始找,这个时候要创建一个变量tail来保存返回值,使用if判断返回值是什么情况,如果是空则开始往右子树找,如果不为空则说明找到了,直接返回tail。右子树也是一样的步骤,如果左右子树都没找到说明找不到了,返回NULL。

BTNode* TreeFind(BTNode* root,int x)
{if (root->val == x)return root;if (root == NULL)return NULL;BTNode* tail = NULL;tail = TreeFind(root->left,x);if (tail)return  tail;tail = TreeFind(root->right,x);if (tail)return tail;return NULL;
}

今天的分享到这里就结束啦!感谢大家的阅读!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/230976.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

项目七 熟练使用Vim程序编辑器与shell

项目七 熟练使用Vim程序编辑器与shell #职业能力目标和要求 1&#xff0c;学会使用vim编辑器。 2&#xff0c;了解shell的强大功能和shell的命令解释过程。 3&#xff0c;学会使用重定向和管道的方法。 4&#xff0c;掌握正则表达式的使用方法。7.1 熟悉使用vim编辑器 7.1.1 …

树与二叉树堆:堆的意义

目录 堆的意义&#xff1a; 第一是堆的排序&#xff0c;第二是堆的top k 排行问题 堆的 top k 排行问题&#xff1a; 面对大量数据的top k 问题&#xff1a; 堆排序的实现&#xff1a;——以升序为例 方法一 交换首尾&#xff1a; 建立大堆&#xff1a; 根结点尾结点的…

异常数据检测 | Python实现oneclassSVM模型异常数据检测

支持向量机(SVM)的异常检测 SVM通常应用于监督式学习,但OneClassSVM[8]算法可用于将异常检测这样的无监督式学习,它学习一个用于异常检测的决策函数其主要功能将新数据分类为与训练集相似的正常值或不相似的异常值。 OneClassSVM OneClassSVM的思想来源于这篇论文[9],SVM使用…

代码混淆的原理和方法详解

摘要 移动App的广泛使用带来了安全隐患&#xff0c;为了保护个人信息和数据安全&#xff0c;开发人员通常会采用代码混淆技术。本文将详细介绍代码混淆的原理和方法&#xff0c;并探讨其在移动应用开发中的重要性。 引言 随着移动应用的普及&#xff0c;数据安全问题日益凸显…

京东API接口的接入(京东工业)

在技术交流群&#xff0c;大家有探讨稳定获取京东商品主图、价格、标题&#xff0c;及sku的完整解决方案。这个引起了我技术挑战的兴趣。 目前&#xff0c;自己做了压测&#xff0c;QPS高、出滑块概率极低&#xff0c;API整体稳定&#xff0c;可满足业务场景的性能需求。 公共…

离散化笔记

文章目录 离散化的适用条件离散化的意思AcWing 802. 区间和CODECODE2 离散化的适用条件 离散化用于区间求和问题对于数域极大&#xff0c;而数的量很少的情况下 离散化的意思 背景&#xff1a;对于一个极大数域上的零星几个数进行操作后&#xff0c;求某段区间内的和 其实意思…

从零搭建AlibabaCloud微服务项目

1&#xff0c;创建maven项目工程如下 equipment-admin 后台equipment-applet 前台或小程序端或app、h5equipment-common 公共模块equipment-gateway 网关equipment-mapper mapper层操作数据库equipment-model 实体类对应数据库表 2&#xff0c;在父pom文件引入依赖 <proper…

Linux常用命令----touch命令

文章目录 Linux操作系统中&#xff0c;touch 命令是一个常用且强大的工具&#xff0c;主要用于创建空文件或设置文件的时间戳。本文将详细介绍 touch 命令的各种参数及其用法&#xff0c;并通过实例演示来加深理解。 1. touch命令基础 touch 命令的基本语法格式为&#xff1a…

100套基于Python的毕业设计-Django项目实战(附源码+论文+演示视频)

大家好&#xff01;我是职场程序猿&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f9e1;今天给大家分享100基于Python和Django的毕业设计&#xff0c;这些项目都经过精心挑选&#xff0c;涵盖了不同的实战主题和用例&#xff0c;可做毕业设计和课程设计参考…

文件基础知识

计算机中的流&#xff1a;在C语言中将通过输入/输出设备&#xff08;键盘、内存、显示器、网络等&#xff09;之间的数据传输抽象表述为“流”。 1、文本流和二进制流 在文本流中输入输出的数据是一系列的字符&#xff0c;可以被修改在二进制流中输入输出数据是一系列字节&am…

ubuntu系统进入休眠后cuda初始化报错

layout: post # 使用的布局&#xff08;不需要改&#xff09; title: torch.cuda.is_available()报错 # 标题 subtitle: ubuntu系统进入休眠后cuda初始化报错 #副标题 date: 2023-11-29 # 时间 author: BY ThreeStones1029 # 作者 header-img: img/about_bg.jpg #这篇文章标题背…

嵌入式设备与PC上位机通信协议设计的几点原则

嵌入式设备在运行中需要设置参数&#xff0c;这个工作经常由PC机来实现&#xff0c;需要为双方通信设计协议&#xff0c;有代表性协议是如下三种&#xff1a; 从上表可以看到&#xff0c;一般嵌入式设备内存和运算性能都有限&#xff0c;因此固定二进制是首选通信协议。 一&am…