【Java学习笔记】75 - 算法优化入门 - 马踏棋盘问题

一、意义

1.算法是程序的灵魂,为什么有些程序可以在海量数据计算时,依然保持高速计算?

2.拿老韩实际工作经历来说,在Unix下开发服务器程序,功能是要支持上千万人同时在线,在上线前, 做内测,一切OK,可上线后,服务器就支撑不住了,公司的CTO对代码进行优化,再次上线,坚如磐石。那一瞬间,你就能感受到程序是有灵魂的,就是算法。

3.编程中算法很多,比如八大排序算法(冒泡、选择、插入、快排、归并、希尔、基数、堆排序、查找算法、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法

4.老韩以骑士周游问题为例,让小伙伴体验用算法去优化程序的意义,让大家直观的感受到算法的威力

二、经典算法问题 - 骑士周游问题

1.马踏棋盘算法也被称为骑士周游问题

2.将马随机放在国际象棋的8x 8棋盘Board[0 ~ 7][0 ~ 7]的某个方格中,马按走棋规则(马走日字)进行移动。要求每个方格只进入次,走遍棋盘上全部64个方格

3.游戏演示:https://u.ali213.net/games/horsesun/index.html?game_ code= 403

4.会使用到图的遍历算法(DFS) +贪心算法优化

算法介绍

1.马踏棋盘问题(骑士周游问题)实际上是图的深度优先搜索(DFS)的应用。

2.如果使用回溯(就是深度优先搜索)来解决,假如马儿踏了53个点,如图:走到了第53个,坐标(1,0),发现已经走到尽头,没办法,那就只能回退了,查看其他的路径,就在棋盘上不停的..... ,思路分析+代码实现

3.先用基本方式来解决,然后使用贪心算法(greedyalgorithm) 进行优化。解决马踏棋盘问题,体会到不同的算法对程序效率的影响

4.使用前面的游戏来验证算法是否正确
 

解决步骤和思路分析

1.创建棋盘chessBoard,是二维数组,

2.将当前位置设置为已经访问,然后根据当前位置,计算马儿还能走哪些位置,并放入到个集合中(ArrayList), 最多有8个,每走一步,使用step+1

3.遍历ArrayList中存放的所有位置,看看那个可以走,如果可以走通,就继续,走不通,就回溯

4.判断马儿是否完成了任务,使用step和应该走的步数比较,如果没有达到数量,则表示没有完成任务,将整个棋盘设置为0

注意:马儿走的策略不同,则得到的结果也不一样,效率也不一样.

多想想 很巧妙的思路

public class HorseChessBoard {private static int X = 6; //colprivate static int Y = 6; //rowprivate static int[][] chessBoard = new int[Y][X]; //棋盘private static boolean[] visited = new boolean[X * Y];//记录某个位置是否走过private static boolean finished = false; //记录马儿是否遍历完棋盘public static void main(String[] args) {int row = 2;int col = 2;long start = System.currentTimeMillis();traversalChessBoard(chessBoard,row - 1,col - 1 , 1);long end = System.currentTimeMillis();System.out.println("耗时" + (end - start) + "ms");for(int[] rows : chessBoard){for (int step : rows){ //step表示该位置是马儿走的第几步System.out.print(step + "\t");}System.out.println();}}//编写核心算法 遍历棋盘 如果遍历成功 就把finished设置为true;public static void traversalChessBoard(int[][] chessBoard, int row,int col,int step){//先把step 记录到chessBoardchessBoard[row][col] = step;//把这个位置设置为已访问visited[row * X + col] = true;//这个索引计算能计算行列在一维数组的对应的下标//获取当前位置可以走的下一个位置有哪些ArrayList<Point> ps = next(new Point(col, row));//col - X,row - Y//遍历while (!ps.isEmpty()){//取出一个位置(点) 取出当前这个ps的第一个点Point p = ps.remove(0);if(!visited[p.y * X + p.x]){//如果这个取出点没有走过//递归遍历traversalChessBoard(chessBoard,p.y,p.x,step + 1);}}//当退出while 看看是否遍历成功,如果没有成功,就重置相应的值,然后进行回溯if(step < X * Y && !finished){//重置chessBoard[row][col] = 0;visited[row * X + col] = false;}else{finished = true;}}public static ArrayList<Point> next(Point curPoint){//创建一个ArrayListArrayList<Point> ps = new ArrayList<>();//创建一个Point对象(点/位置),准备放入到psPoint p1 = new Point();//判断在curPoint是否可以走如下位置,如果可以走,就将该点(Point)放入到ps//判断是否可以走5位置if((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y - 1) >=0){ps.add(new Point(p1));//避免一个点重复放}//判断是否可以走6位置if((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y - 2) >=0){ps.add(new Point(p1));//避免一个点重复放}//判断是否可以走7位置if((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y - 2) >= 0){ps.add(new Point(p1));//避免一个点重复放}//判断是否可以走0位置if((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y - 1) >=0){ps.add(new Point(p1));//避免一个点重复放}//判断是否可以走1位置if((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y + 1) < Y){ps.add(new Point(p1));//避免一个点重复放}//判断是否可以走2位置if((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y + 2) < Y){ps.add(new Point(p1));//避免一个点重复放}//判断是否可以走3位置if((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y + 2) < Y){ps.add(new Point(p1));//避免一个点重复放}//判断是否可以走4位置if((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y + 1) < Y){ps.add(new Point(p1));//避免一个点重复放}return ps;}
}

 

对代码使用贪心算法,进行优化,提高速度

分析
1.我们现在走的下一个位置,是按照我们的顺时针来挑选位置,因此选择的这个点的下-一个可以走的位置的个数是不确定的.

2.优化思路是:我们应该选择下一个的下一个可以走的位置较少的点,开始走,这样可以减少回溯的此时

3.代码:对我们的ps集合按照可以走的下一个位置的次数进行排序,升序排序.

//写一个方法,对ps的各个位置,可以走的下一个位置的次数进行排序,把可能走的下一个位置从小到大排序public static void sort(ArrayList<Point> ps){ps.sort(new Comparator<Point>() {@Overridepublic int compare(Point o1, Point o2) {return next(o1).size() - next(o2).size();}});}

仅仅只是对该存放的可能点进行最小可能点排序 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/231703.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】Makefile

宏定义含义举例CPPFLAGSC 预编译的选项CPPFLAGS(r’-DRILL_USE_BTHREAD1’)CFLAGSC 编译器的选项CFLAGS(’ -g -Ofast -pipe -W -Wall -fPIC’)CXXFLAGSC 编译器的选项CXXFLAGS(’ -g -Ofast -pipe -W -Wall -Werror -fPIC -DRAPIDJSON_HAS_STDSTRING -stdc17’ ) 写在最后&…

react-route-dom 实现简单的嵌套路由

最终效果 点击 to test1 点击to test2 > to test21 点击to test2 > to test22 代码如下 path: "page",element: <父组件 />,children: [{ path: "test1", element: <Test1 /> },{path: "test2",element: <Test2 />…

详解API开发【电商平台API封装商品详情SKU数据接口开发】

1、电商API开发 RESTful API的设计 RESTful API是一种通过HTTP协议发送和接收数据的API设计风格。它基于一些简单的原则&#xff0c;如使用HTTP动词来操作资源、使用URI来标识资源、使用HTTP状态码来表示操作结果等等。在本文中&#xff0c;我们将探讨如何设计一个符合RESTfu…

【华为数通HCIP | 网络工程师】821刷题日记-IS-IS(2)

个人名片&#xff1a; &#x1f43c;作者简介&#xff1a;一名大三在校生&#xff0c;喜欢AI编程&#x1f38b; &#x1f43b;‍❄️个人主页&#x1f947;&#xff1a;落798. &#x1f43c;个人WeChat&#xff1a;hmmwx53 &#x1f54a;️系列专栏&#xff1a;&#x1f5bc;️…

【排序】希尔排序(C语言实现)

文章目录 前言1. 希尔排序的思想2. 希尔排序的一些小优化 前言 本章将详细介绍希尔排序的思想及实现&#xff0c;由于希尔排序是在插入排序的思想上进行升华&#xff0c;所以如果不知道插入排序或者不熟悉的可以先看看这篇文章&#xff1a;《简单排序》中的直接插入排序。 1. 希…

大数据Hadoop-HDFS_架构、读写流程

大数据Hadoop-HDFS 基本系统架构 HDFS架构包含三个部分&#xff1a;NameNode&#xff0c;DataNode&#xff0c;Client。 NameNode&#xff1a;NameNode用于存储、生成文件系统的元数据。运行一个实例。 DataNode&#xff1a;DataNode用于存储实际的数据&#xff0c;将自己管理…

【Unity实战】按物品掉落率,随机掉落战利品物品系统(附项目源码)

文章目录 前言开始参考源码完结 前言 当开发游戏时&#xff0c;一个常见的需求是实现一个物品随机掉落系统。这个系统可以让玩家在击败敌人或完成任务后获得随机的物品奖励&#xff0c;增加游戏的可玩性和乐趣。 在Unity中&#xff0c;我们可以通过编写代码来实现这样的战利品…

leetcode 611. 有效三角形的个数(优质解法)

代码&#xff1a; class Solution {public int triangleNumber(int[] nums) {Arrays.sort(nums);int lengthnums.length;int n0; //三元组的个数//c 代表三角形最长的那条边for (int clength-1;c>2;c--){int left0;int rightc-1;while (left<right){if(nums[left]nums[r…

Linux基础项目开发1:量产工具——输入系统(三)

前言&#xff1a; 前面我们已经实现了显示系统&#xff0c;现在我们来实现输入系统&#xff0c;与显示系统类似&#xff0c;下面让我们一起来对输入系统进行学习搭建吧 目录 一、数据结构抽象 1. 数据本身 2. 设备本身&#xff1a; 3. input_manager.h 二、触摸屏编程 to…

Azure Machine Learning - 创建Azure AI搜索索引

目录 一、先决条件检查空间 二、创建和加载索引启动向导连接到 数据源跳过认知技能配置配置索引配置索引器 三、监视索引器进度四、检查搜索索引结果五、添加或更改字段六、使用搜索浏览器查询七、运行更多示例查询八、清理资源 在本文中&#xff0c;你将使用导入数据向导和由虚…

动态规划:解决复杂问题的利器(上)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

谈一谈大小端

文章目录 一&#xff0c;什么是大小端二&#xff0c;为什么有大小端三&#xff0c;怎么验证大小端 一&#xff0c;什么是大小端 大端存储模式&#xff1a;是指数据的地位存储在高地址处&#xff0c;数据的高位存储在低地址处。 小端存储模式&#xff1a;是指数据的低位存储在低…