旋转框(obb)目标检测计算iou的方法

首先先定义一组多边形,这里的数据来自前后帧的检测结果

 pre = [[[860.0, 374.0], [823.38, 435.23], [716.38, 371.23], [753.0, 310.0]],[[829.0, 465.0], [826.22, 544.01], [684.0, 539.0], [686.78, 459.99]],[[885.72, 574.95], [891.0, 648.0], [725.0, 660.0], [719.72, 586.95]],[[1164.0, 406.0], [1101.05, 410.72], [1095.0, 330.0], [1157.95, 325.28]],[[953.04, 102.78], [955.04, 138.78], [915.0, 141.0], [913.0, 105.0]],[[1173.0, 524.0], [1104.0, 524.0], [1104.0, 437.0], [1173.0, 437.0]],[[879.0, 297.0], [831.45, 340.49], [756.0, 258.0], [803.55, 214.51]],[[1136.79, 226.81], [1176.33, 263.31], [1111.54, 333.5], [1072.0, 297.0]],[[835.42, 225.76], [790.0, 251.0], [750.66, 180.19], [796.08, 154.95]],[[887.0, 196.0], [839.04, 208.16], [821.0, 137.0], [868.96, 124.84]],[[1033.0, 109.0], [1027.07, 142.01], [988.0, 135.0], [993.93, 101.99]],[[1056.0, 83.0], [1093.09, 90.53], [1080.0, 155.0], [1042.91, 147.47]],[[1064.01, 155.84], [1104.0, 158.0], [1099.99, 232.16], [1060.0, 230.0]],[[1087.06, 118.88], [1124.0, 137.0], [1097.94, 190.12], [1061.0, 172.0]]]post = [[[860.44, 373.25], [825.0, 434.0], [716.56, 370.75], [752.0, 310.0]],[[829.0, 466.0], [825.64, 545.03], [684.64, 539.03], [688.0, 460.0]],[[884.04, 575.0], [889.0, 649.0], [724.96, 660.0], [720.0, 586.0]],[[1163.0, 406.0], [1100.0, 410.0], [1094.92, 329.94], [1157.92, 325.94]],[[953.0, 103.0], [955.56, 137.96], [914.56, 140.96], [912.0, 106.0]],[[1173.0, 524.0], [1104.0, 524.0], [1104.0, 438.0], [1173.0, 438.0]],[[880.0, 297.0], [831.0, 342.0], [755.34, 259.61], [804.34, 214.61]],[[1137.31, 226.66], [1177.0, 263.0], [1112.0, 334.0], [1072.31, 297.66]],[[887.06, 194.23], [840.0, 207.0], [820.94, 136.77], [868.0, 124.0]],[[836.69, 224.57], [792.69, 251.57], [750.0, 182.0], [794.0, 155.0]],[[1033.0, 106.0], [1030.0, 143.0], [987.95, 139.59], [990.95, 102.59]],[[1055.95, 83.27], [1094.0, 91.0], [1081.0, 155.0], [1042.95, 147.27]],[[1064.0, 155.0], [1105.02, 156.05], [1103.02, 234.05], [1062.0, 233.0]],[[1081.72, 120.74], [1120.0, 135.0], [1101.0, 186.0], [1062.72, 171.74]]]

其中的每个列表元素代表一个多边形,列表中包含四个元素,分别代表多边形的顶点坐标

    import numpy as npimport cv2# 创建一个全白图像image = np.ones((1080, 1920, 3), dtype=np.uint8) * 255for i, poly in enumerate(pre):polygon_list = np.array(poly, np.int32)cv2.drawContours(image, contours=[polygon_list], contourIdx=-1, color=(0, 0, 255), thickness=2)for i, poly in enumerate(post):polygon_list = np.array(poly, np.int32)cv2.drawContours(image, contours=[polygon_list], contourIdx=-1, color=(255, 0, 0), thickness=2)cv2.imshow("Image", image)cv2.waitKey(0)cv2.destroyAllWindows()

用opencv将这些坐标画出来:

方法一

使用opencv内置函数计算iou

    import mathdef poly2rbox(polys):"""Trans poly format to rbox format."""assert polys.shape[-1] == 8rboxes = []for poly in polys:poly = np.float32(poly.reshape(4, 2))(x, y), (w, h), angle = cv2.minAreaRect(poly)  # θ ∈ [0, 90]rboxes.append([x, y, w, h, angle])return np.array(rboxes)def bbox_overlaps(boxes, query_boxes):""" Calculate IoU(intersection-over-union) and angle difference for each input boxes and query_boxes. """if isinstance(boxes, list):boxes = np.array(boxes)if isinstance(query_boxes, list):query_boxes = np.array(query_boxes)N = boxes.shape[0]K = query_boxes.shape[0]boxes = np.round(boxes, decimals=2)query_boxes = np.round(query_boxes, decimals=2)overlaps = np.reshape(np.zeros((N, K)), (N, K))delta_theta = np.reshape(np.zeros((N, K)), (N, K))for k in range(K):rect1 = ((query_boxes[k][0], query_boxes[k][1]),(query_boxes[k][2], query_boxes[k][3]),query_boxes[k][4])for n in range(N):rect2 = ((boxes[n][0], boxes[n][1]),(boxes[n][2], boxes[n][3]),boxes[n][4])# can check official document of opencv for detailsnum_int, points = cv2.rotatedRectangleIntersection(rect1, rect2)S1 = query_boxes[k][2] * query_boxes[k][3]S2 = boxes[n][2] * boxes[n][3]if num_int == 1 and len(points) > 2:s = cv2.contourArea(cv2.convexHull(points, returnPoints=True))overlaps[n][k] = s / (S1 + S2 - s)elif num_int == 2:overlaps[n][k] = min(S1, S2) / max(S1, S2)delta_theta[n][k] = np.abs(query_boxes[k][4] - boxes[n][4])return overlaps, delta_thetapre = poly2rbox(np.array(pre).reshape(-1,8))post = poly2rbox(np.array(post).reshape(-1,8))overlaps = bbox_overlaps(pre, post)[0]print(overlaps)

运行结果如下: 

方法二

使用shapely

    from shapely.geometry import Polygondef calculate_iou(poly1, poly2):# 计算两个多边形的交集面积intersection_area = calculate_intersection(poly1, poly2)# 计算两个多边形的并集面积union_area = calculate_union(poly1, poly2)# 计算IoU值iou = intersection_area / union_areareturn ioudef calculate_intersection(poly1, poly2):# 计算多边形的交集面积# 这里使用你选择的多边形交集计算方法,例如使用Shapely库的intersection()函数intersection = poly1.intersection(poly2)intersection_area = intersection.areareturn intersection_areadef calculate_union(poly1, poly2):# 计算多边形的并集面积# 这里使用你选择的多边形并集计算方法,例如使用Shapely库的union()函数union = poly1.union(poly2)union_area = union.areareturn union_areadef bbox_overlaps_shapely(boxes, query_boxes):""" Calculate IoU(intersection-over-union) and angle difference for each input boxes and query_boxes. """if isinstance(boxes, list):boxes = np.array(boxes)if isinstance(query_boxes, list):query_boxes = np.array(query_boxes)N = boxes.shape[0]K = query_boxes.shape[0]boxes = np.round(boxes, decimals=2)query_boxes = np.round(query_boxes, decimals=2)overlaps = np.reshape(np.zeros((N, K)), (N, K))delta_theta = np.reshape(np.zeros((N, K)), (N, K))for k in range(K):q_box = Polygon(query_boxes[k].reshape(-1, 2).tolist())for n in range(N):d_box = Polygon(boxes[n].reshape(-1, 2).tolist())overlaps[n][k] = calculate_iou(q_box, d_box)return overlaps, delta_thetaoverlaps = bbox_overlaps_shapely(np.array(pre).reshape(-1,8),np.array(post).reshape(-1,8))[0]print(overlaps)

运行结果如下:

方法三

cuda内置的函数,需要编译环境,就不展开了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/235688.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RocketMQ-RocketMQ快速实战及集群原理

一、MQ简介 ​ MQ:MessageQueue,消息队列。是在互联网中使用非常广泛的一系列服务中间件。 这个词可以分两个部分来看,一是Message:消息。消息是在不同进程之间传递的数据。这些进程可以部署在同一台机器上,也可以分布…

python动态加载内容抓取问题的解决实例

问题背景 在网页抓取过程中,动态加载的内容通常无法通过传统的爬虫工具直接获取,这给爬虫程序的编写带来了一定的技术挑战。腾讯新闻(https://news.qq.com/)作为一个典型的动态网页,展现了这一挑战。 问题分析 动态…

LeetCode刷题---打家劫舍问题

顾得泉:个人主页 个人专栏:《Linux操作系统》 《C/C》 《LeedCode刷题》 键盘敲烂,年薪百万! 一、打家劫舍 题目链接:打家劫舍 题目描述 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定…

CTO对生活和工作一点感悟

陌生人,你好啊。 感谢CSDN平台让我们有了隔空认识,交流的机会。 我是谁? 我呢,毕业快11年,在网易做了几年云计算,后来追风赶上了大数据的浪潮,再到后来混迹在AI、智能推荐等领域。 因为有一颗…

Discuz论坛自动采集发布软件

随着网络时代的不断发展,Discuz论坛作为一个具有广泛用户基础的开源论坛系统,其采集全网文章的技术也日益受到关注。在这篇文章中,我们将专心分享通过输入关键词实现Discuz论坛的全网文章采集,同时探讨采集过程中伪原创的发布方法…

菜鸟学习日记(Python)——基本数据类型

Python 中的变量不需要声明。每个变量在使用前都必须赋值,变量赋值以后该变量才会被创建。 在 Python 中,变量就是变量,它没有类型,我们所说的"类型"是变量所指的内存中对象的类型。 等号()用来…

计算机网络:应用层(下篇)

文章目录 前言一 、电子邮件(Email)1.邮件服务器2.SMTP[RFC 2821]3.邮件报文格式4.邮件访问协议 二、DNS(域名系统)1.DNS的历史2.DNS总体思路和目标(1)问题1:DNS名字空间(2&#xff…

nodejs+vue+elementui+express青少年编程课程在线考试系统

针对传统线下考试存在的老师阅卷工作量较大,统计成绩数据时间长等问题,实现一套高效、灵活、功能强大的管理系统是非常必要的。该系统可以迅速完成随机组卷,及时阅卷、统计考试成绩排名的效果。该考试系统要求:该系统将采用B/S结构…

Java全栈基础篇--集合

集合 集合:集合是java中提供的一种容器,可以用来存储多个数据。 特点: 长度不固定,还可以存储不同的数据(但是一般都用同一类型) 集合和数组既然都是容器,它们有啥区别呢? 数组的长…

在Spring Boot中使用JavaMailSender发送邮件

用了这么久的Spring Boot,我们对Spring Boot的了解应该也逐步进入正轨了,这篇文章讲的案例也在我们的实际开发中算是比较实用的了,毕竟我们完成注册功能和对用户群发消息,都可以采用到邮箱发送功能,往下看,…

Linux基础操作三:Linux操作命令-目录文件操作

1、关机和重启 关机shutdown -h now 立刻关机shutdown -h 5 5分钟后关机poweroff 立刻关机 重启shutdown -r now 立刻重启shutdown -r 5 5分钟后重启reboot 立刻重启 2、帮助 --help命令shutdown --help:…

【论文阅读】1 SkyChain:一个深度强化学习的动态区块链分片系统

SkyChain 一、文献简介二、引言及重要信息2.1 研究背景2.2 研究目的和意义2.3 文献的创新点 三、研究内容3.1模型3.2自适应分类账协议3.2.1状态块创建3.2.2合并过程3.2.3拆分过程 3.3评价框架3.3.1性能3.3.1.1共识延迟3.3.1.2重新分片延迟3.3.1.3处理事务数3.3.1.4 约束 3.3.2 …