智能优化算法应用:基于风驱动算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于风驱动算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于风驱动算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.风驱动算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用风驱动算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.风驱动算法

风驱动算法原理请参考:https://blog.csdn.net/u011835903/article/details/108676626
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

风驱动算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明风驱动算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/236003.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Golang数据类型(数字型)

Go数据类型(数字型) Go中数字型数据类型大致分为整数(integer)、浮点数(floating point )和复数(Complex)三种 整数重要概念 整数在Go和Python中有较大区别,主要体现在…

C语言——交换两个int变量的值,不能使用第三个变量。

交换两个int变量的值&#xff0c;不能使用第三个变量。即 a3,b5,交换之后a5,b3; #include<stdio.h> int main() {int a3;int b5;printf("a%d b%d\n",a,b);aa^b;ba^b;aa^b;printf("a%d b%d\n",a,b); } “^”——按位异或操作符&#xff0c;这里的按…

el-table实现动态表头

1.1el-table渲染 <el-tableref"refreshTable":data"tableData"highlight-current-row><el-table-columnfixedwidth"170px"label"测点"align"center"prop"测站名称"/><el-table-column label"…

网络调试助手 连接Onenet 多协议接入平台 TCP透传协议

onenet文档链接 多协议接入地址 打开Onenet平台&#xff0c;多协议接入 选择TCP透传协议&#xff0c;点击添加产品&#xff0c;输入信息&#xff0c;点击确认 点击设备列表&#xff0c;添加设备 下面需要上传一个解析脚本文件该文件的下载地址lua文件下载地址 建立连接 设备…

【数据分析 | Numpy】Numpy模块系列指南(一),从设计架构说起

&#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&…

Windows本地搭建Emby媒体库服务器并实现远程访问「内网穿透」

文章目录 1.前言2. Emby网站搭建2.1. Emby下载和安装2.2 Emby网页测试 3. 本地网页发布3.1 注册并安装cpolar内网穿透3.2 Cpolar云端设置3.3 Cpolar内网穿透本地设置 4.公网访问测试5.结语 1.前言 在现代五花八门的网络应用场景中&#xff0c;观看视频绝对是主力应用场景之一&…

Python教程 – 简单代码实现HTML 转Word

之前文章分享过如何使用Spire.Doc for Python库将Word文档转为HTML格式&#xff0c;反过来&#xff0c;该库也能实现HTML到Word文档的转换。通过代码进行转换&#xff0c;避免了手动复制粘贴费时间&#xff0c;并且可能会出现错误或格式混乱等问题。 Spire.Doc for Python库能…

Linux:docker的网络通信(7)

1.端口映射 端口映射---端口映射机制将容器内的服务提供给外部网络访问 启动容器时&#xff0c;不指定对应的端口&#xff0c;在容器外无法通过网络访问容器内的服务 可随机或指定映射端口范围 -P ---------大写P&#xff0c;开启随机端口 -p 宿主机端口&#xff1a;容器端口…

RHEL8.9 静默安装Oracle19C

RHEL8.9 静默安装Oracle19C 甘肃圆角网络科技开发有限公司 说明(GUI)&#xff1a;  1.实际业务场景中&#xff0c;Linux环境一般情况下是没有GUI的。没有GUI并不意味着没有安装图形界面。可能在部署Linux操作系统环境的时候安装了桌面环境&#xff0c;只是启动的时候设置了启动…

【UGUI】实现背包的常用操作

1. 添加物品 首先&#xff0c;你需要一个包含物品信息的类&#xff0c;比如 InventoryItem&#xff1a; using UnityEngine;[CreateAssetMenu(fileName "NewInventoryItem", menuName "Inventory/Item")] public class InventoryItem : ScriptableObje…

智安网络|发现未知风险,探索渗透测试的奥秘与技巧

在当今信息时代&#xff0c;网络安全已成为组织和个人面临的重大挑战。为了保护网络系统的安全&#xff0c;渗透测试成为一种重要的手段。 一、渗透测试的基本原理 渗透测试是通过模拟黑客攻击的方式&#xff0c;对目标系统进行安全评估。其基本原理是模拟真实攻击者的思维和行…

【小布_ORACLE笔记】Part11-5 RMAN Backups

【小布_ORACLE笔记】Part11-5 RMAN Backups 文章目录 【小布_ORACLE笔记】Part11-5 RMAN Backups1. 增量备份&#xff08;Incremental Backups)1.1差异增量备份&#xff08;Differential Incremental Backup&#xff09;1.2累积增量备份&#xff08;Cumulative Incremental Bac…