机器学习(2)回归

0.前提

上一期,我们简单的介绍了一些有关机器学习的内容。学习机器学习的最终目的是为了服务我未来的毕设选择之一——智能小车,所以其实大家完全可以根据自己的需求来学习这门课,我做完另一辆小车后打算花点时间去进行一次徒步行,回来就开始专心积累底层知识了(回归轻松时刻,去考试,本来预期是一个学期更新大概25篇文章的,现在看其实已经完全超过预期了)。

1.线性回归

1.线性回归的概念

线性回归:一种通过属性的线性组合来进行预测的线性模型,其目的是找到一条直线或者一个平面或者更高维的超平面,使得预测值与真实值之间的误差最小化。

如图为单变量的线性回归,蓝点为真实数据,红点为预测数据,红点与红线重合度越高,数据拟合的效果越好。

2.符号定义

·m代表训练集中样本的数量

·n代表特征的数量

·x代表特征/输入变量

·y代表目标变量/输出变量

·(x,y)代表训练集中的样本

·(x^{(i)},y^{(i)})代表第i个观察样本

·h代表学习算法的解决方案或函数也称为假设

·\widehat{y}=h(x)代表预测值

·x^{(i)}是特征矩阵中的第i行,是向量

·x_{j}^{(i)}是代表特征矩阵中第i行的第j个特征

3.算法流程

h(x)=w_{0}+w_{1}x_{1}+w_{2}x_{2}+...+w_{n}x_{n}

·损失函数:度量样本预测的错误程度,损失函数值越小,模型就越好。常用的损失函数包括:0-1损失函数、平方损失函数、绝对损失函数、对数损失函数等;损失函数采用平方和损失:l(x^{(i)})=\frac{1}{2}(h(x^{(i)})-y^{(i)})^{2},损失函数的1/2是为了便于计算,使对平方项求导后的常数系数为1。

·代价函数:也称成本函数,度量全部样本集的平均误差。常用的代价函数包括均方误差、均方根误差、平均绝对误差等;残差平方和:J(w)=\frac{1}{2}\sum_{i=1}^{m}(h(x^{(i)})-y^{(i)})^{2}

·目标函数:代价函数和正则化函数,最终要优化的函数。

4.线性回归求解

求解 :min\frac{1}{2}\sum_{i=1}^{m}(h(x^{(i)})-y^{(i)})^{2}的一组w,常见的求残差平方和最小的方法为最小二乘法和梯度下降法。

2.最小二乘法(LSM)

·其实就是求\frac{\partial J(w)}{\partial w}最小

·将向量表达形式转为矩阵表达形式,J(w)=\frac{1}{2}(Xw-Y)^{2},X为mn+1列的矩阵(m为样本个数,n为特征个数),wn+1行1列的矩阵(包含了w_{0}),Y为m行1列的矩阵:
J(w)=\frac{1}{2}(Xw-Y)^{2}=J(w)=\frac{1}{2}(Xw-Y)^{T}(Xw-Y)
·J(w)求偏导:
\frac{\partial J(w)}{\partial w}=\frac{1}{2}\frac{\partial (Xw-Y)^{T}(Xw-Y)}{\partial w}=X^{T}Xw-X^{T}Y
·结果:
w=(X^{T}X)^{^{-1}}X^{T}Y

3.梯度下降

梯度下降有3种形式:批量梯度下降、随机梯度下降、小批量梯度下降。

1.批量梯度下降(BGD)

批量梯度下降:梯度下降的每一步中,都用到了所有的训练样本。

参数更新:w_{j}:=w_{j}-\alpha \frac{1}{m}\sum_{i=1}^{m}((h(x^{(i)})-y^{(i)})·x_{j}^{(i)}) (同步更新w_{j}(j=0,1,...,n)),\alpha代表学习率,(h(x^{(i)})-y^{(i)})·x_{j}^{(i)}代表梯度。

2.随机梯度下降(SGD)

随机梯度下降:梯度下降的每一步中,用到一个样本,在每一次计算后更新参数,而不需要将所有的训练集求和。

参数更新:w_{j}:=w_{j}-\alpha((h(x^{(i)})-y^{(i)})·x_{j}^{(i)})(同步更新w_{j}(j=0,1,...,n)

3.小批量梯度下降(MBGD)

梯度下降的每一步,用到一定批量的训练样本,每计算常数𝑏次训练实例,更新一次参数 w
参数更新:w_{j}:=w_{j}-\alpha \frac{1}{b}\sum_{k=i}^{i+b-1}((h(x^{(k)})-y^{(k)})·x_{j}^{(k)})(同步更新 w_{j}(j=0,1,...,n)),当b=1时是随机梯度下降,b=m时是批量梯度下降,b=2的指数倍数(常见32、64、128等)时为小批量梯度下降

4.梯度下降与最下二乘法的比较

1.梯度下降

需要选择学习率\alpha,要多次迭代,当特征数量n较大时能较好适用,适用各种类型的模型。

2.最小二乘法

不需要选择学习率\alpha,一次计算得出,需要计算(X^{T}X)^{-1},如果特征数量n较大则运算代价大,因为矩阵逆得计算时间复杂度为0(n^{3}),一般当n小于10000时可以接受,只适用于线性模型,不适合逻辑回归等其他模型。

5.数据归一化/标准化

1.作用

标准化/归一化可以提升模型精度和加速模型收敛。

2.归一化(最大-最小规范化)

x^{*}=\frac{x-x_{min}}{x_{max}-x_{min}},将数据映射到[0,1]区间,数据归一化的目的是使得各特征对目标变量得影响一致,会将特征数据进行伸缩变化,所以数据归一化是会改变特征数据分布的。

3.Z-Score标准化

x^{*}=\frac{x-\mu }{\sigma },其中\sigma ^{2}=\frac{1}{m}\sum_{i=1}^{m}(x^{(i)}-\mu )^{2},\mu =\frac{1}{m}\sum_{i=1}^{m}x^{(i)},处理后的数据均值为0,方差为1,数据标准化为了不同特征间具备可比性,经过标准化变换后的特征数据分布没有改变,当数据特征取值范围或单位差异较大时,最好做标准化处理。

4.是否需要做数据归一化/标准化

1.需要

线性模型,如基于距离度量的模型包括KNN(K近邻)、K-means聚类、感知机和SVM。另外,线性回归类的几个模型一般情况下也是需要做数据归一化/标准化处理的。

2.不需要
决策树、基于决策树的Boosting和Bagging等集成学习模型对于特征取值大小并不敏感,如随机森林、XGBoost、LightGBM等树模型,以及朴素贝叶斯,以上这些模型一般不需要做数据归一化/标准化处理。

6.正则化

1.拟合

注释:拟合就好比成绩与刷题量之间的关系:欠拟合就是你刷题量特别少,考试得到的分数比你想象中的要低,这就说明欠拟合了;过拟合就是你知道刷题能提高成绩,然后一天16个小时都在刷题,是的你成绩变高了,但是你只是读了万卷书没能行万里路,这就是过拟合了;正合适就是,你刷了一定量的题,成绩不错,同时你也行了万里路,这就是正合适。

2.处理过拟合

1.获取更多的训练数据

使用更多的数据能有效解决过拟合,更多的数据样本能让模型学习更多更有效的特征,减少噪声影响。

2.降维

丢弃一些偏差较大的样本特征,手动选择保留的特征,也可以使用一些模型选择算法。

3.正则化

保留所有特征,减少参数大小,可以改善或减少过拟合问题。

4.集成学习

将多个模型集成在一起,来降低单一模型的过拟合风险。

3.处理欠拟合

1.添加新特征

特征不足或者现有特征与样本标签相关性不强时,模型容易欠拟合。挖掘组合新特征,效果会有所改善。

2.增加模型复杂度

简单模型学习能力差,增加模型的复杂度可以使模型有更强的拟合能力。例如:线性模型中添加高次项,神经网咯模型中增加网络层数或神经元个数等。

3.减小正则化系数
正则化是用来防止过拟合的,但当模型出现欠拟合现象时,则需要有针对性地减小正则化系数。

4.正则化

·λ为正则化系数,调整正则化项与训练误差的比例,λ>0。

·1≥ρ≥0为比例系数,调整L1正则化与L2正则化的比例。

1.L1正则化

J(w)=\frac{1}{2}\sum_{i=1}^{m}(h(x^{(i)})-y^{(i)})^{2}+\lambda \sum_{j=1}^{n}|w_{j}|,(Lasso回归)

2.L2正则化

J(w)=\frac{1}{2}\sum_{i=1}^{m}(h(x^{(i)})-y^{(i)})^{2}+\lambda \sum_{j=1}^{n}w_{j}^{2},(岭回归)

3.Elastic Net

J(w)=\frac{1}{2}\sum_{i=1}^{m}(h(x^{(i)})-y^{(i)})^{2}+\lambda (\rho .\sum_{j=1}^{n}|w_{j}|+(1-\rho ).\sum_{j=i}^{n}w_{j}^{2}),(弹性网络)

7.回归的评价指标

y^{(i)}代表第i个样本的真实值;\widehat{y}^{(i)}代表第i个样本的预测值;m为样本个数。

1.均方误差(MSE)

MSE=\frac{1}{m}\sum_{i=1}^{m}(y^{(i)}-\widehat{y}^{(i)})^{2}

2.平均绝对误差(MAE)

MAE(y,\widehat{y})=\frac{1}{m}\sum_{i=1}^{m}|y^{(i)}-\widehat{y}^{(i)}|

3.均方跟误差(RMSE)

RMSE(y,\widehat{y})=\sqrt{\frac{1}{m}\sum_{i=1}^{m}(y^{(i)}-\widehat{y}^{(i)})^{2}}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/237995.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mysql中删除数据后,新增数据时id会跳跃,主键自增id不连续

引言: 在使用MySQL数据库时,有时候我们需要删除某些记录,但是删除记录后可能会导致表中的id不再连续排序。 如何实现删除记录后让id重新排序的功能。 如图: 删除数据后,中间的id不会自动连续。 下面有两种方法进行重…

小航助学题库蓝桥杯题库c++选拔赛(21年3月)(含题库教师学生账号)

需要在线模拟训练的题库账号请点击 小航助学编程在线模拟试卷系统(含题库答题软件账号) 需要在线模拟训练的题库账号请点击 小航助学编程在线模拟试卷系统(含题库答题软件账号)

Redis分布式锁学习总结

⭐️ 前言 想必大家都有过并发编程的经验,在一个单体应用中,可以通过java提供的各种锁机制来控制多线程对于单体应用中同一资源的并发访问;那么在分布式场景下,想要控制多个应用对于同一外部资源的并发访问,就要用到分…

搭建nfs文件目录共享

搭建nfs文件目录共享 一、简介 NFS,英文全称是Network File System,中文全称是网络文件系统,是FreeBSD支持的文件系统中的一种,它允许网络中的计算机之间通过TCP/IP网络共享资源,在NFS应用中,本地NFS的客…

LangChain的函数,工具和代理(三):LangChain中轻松实现OpenAI函数调用

在我之前写的两篇博客中:OpenAI的函数调用,LangChain的表达式语言(LCEL)中介绍了如何利用openai的api来实现函数调用功能,以及在langchain中如何实现openai的函数调用功能,在这两篇博客中,我们都需要手动去创建一个结构比较复杂的函数描述变量…

存储虚拟化的写入过程

存储虚拟化的场景下,整个写入的过程。 在虚拟机里面,应用层调用 write 系统调用写入文件。write 系统调用进入虚拟机里面的内核,经过 VFS,通用块设备层,I/O 调度层,到达块设备驱动。虚拟机里面的块设备驱动…

分享89个清新唯美PPT,总有一款适合您

分享89个清新唯美PPT,总有一款适合您 89个清新唯美PPT下载链接:https://pan.baidu.com/s/14DAA9jvVmlQZ_FJ4DNy9Rw?pwd8888 提取码:8888 Python采集代码下载链接:采集代码.zip - 蓝奏云 学习知识费力气,收集整…

LeetCode Hot100 438.找到字符串中所有字母异位词

题目: 给定两个字符串 s 和 p,找到 s 中所有 p 的 异位词 的子串,返回这些子串的起始索引。不考虑答案输出的顺序。 异位词 指由相同字母重排列形成的字符串(包括相同的字符串)。 代码: class Solution …

伙伴关系亲密无间,泄密无从滋生:上海迅软DSE帮您提升供应商机密保护力!

如今企业与第三方供应商的合作越来越频繁,为了达到合作伙伴的信息安全要求,防止机密被有意无意泄露,不少企业除了提高员工安全意识,还会主动部署安全产品,强化企业的信息保护措施。 迅软DSE企业机密防泄密解决方案 1、…

centos8 在线安装、离线安装cmake

在线安装 yum install -y cmake make 离线安装 通过finalshell 上传离线安装包 离线安装 进入到程序所在路径下执行命令进行安装 rpm -Uvh --force --nodeps *.rpm

汽车行驶不同工况数据

1、内容简介 略 28-可以交流、咨询、答疑 2、内容说明 汽车行驶不同工况数据 汽车行驶不同工况数据 ECE、EUDC、FTP75、NEDC、自定义 3、仿真分析 4、参考论文 略 链接:https://pan.baidu.com/s/1AAJ_SlHseYpa5HAwMJlk1w 提取码:rvol

2021年11月10日 Go生态洞察:Twelve Years of Go

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…