探索数据之美:深入学习Plotly库的强大可视化

1. 引言:

Plotly 是一个交互性可视化库,可以用于创建各种漂亮的图表和仪表板。它支持多种编程语言,包括Python、R、JavaScript。在Python中,Plotly提供了Plotly Express和Graph Objects两个主要的绘图接口。

2. Plotly库简介:

2.1 Plotly Express和Graph Objects两个主要接口

  • Plotly Express: 提供了简单而高级的图表绘制功能,通过简单的语法可以创建各种图表类型。对于快速生成图表和初步探索数据非常方便。
  • Graph Objects: 提供了更细粒度的控制,允许用户更精细地定制图表的各个方面。适用于对图表进行更高级别的定制和调整。

2.2 Plotly Dash用于构建交互式仪表板的框架

Plotly Dash是一个用于构建交互式、高度可定制的仪表板的框架。通过Dash,用户可以创建自定义的数据分析仪表板,实现交互式数据探索。

3. Plotly的基础图表类型:

散点图:简单、直观的数据分布展示

import plotly.express as px
import pandas as pd#创建演示数据
df = pd.DataFrame({'date': ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04'],'product':['A','A','B','C'],'amount': [20, 40, 30, 26],'cost': [3, 6, 2, 10]
})
df['roi'] = df['amount'] / df['cost']# 创建散点图
fig = px.scatter(df, x='cost', y='amount',color='product', size='roi',title='Scatter Plot')
fig.show()

运行上述代码后,效果如下,我们可以进行放大、缩小、点击等一些列操作:
scatter

折线图:趋势和变化的可视化

import plotly.express as px# 创建折线图
fig = px.line(df, x='date', y='amount', title='Date Vs amount')
fig.show()

line

条形图:分类数据的对比和分布

import plotly.express as px# 创建条形图
fig = px.bar(df, x='date', y='amount', color='product', title='Date Vs amount Vs product')
fig.show()

运行后,效果如下:
bar

饼图:比例和占比的直观呈现

import plotly.express as px# 创建饼图
fig = px.pie(df, values='Count', names='Category', title='Pie Chart')
fig.show()

效果如下:
pie

4. 高级可视化:

3D 散点图:多维数据的展示

import plotly.graph_objects as go# 示例数据
df=pd.DataFrame({'x':[1, 2, 3, 4, 5],
'y':[10, 12, 8, 15, 11],
'z' : [5, 8, 3, 10, 6]})# 创建3D散点图
fig = go.Figure(data=[go.Scatter3d(x=df['x'], y=df['y'], z=df['z'], mode='markers')])
fig.update_layout(title='3D Scatter Plot')
fig.show()

运行后,效果如下:
3d

热力图:相关性的清晰展示

import pandas as pd
import plotly.graph_objects as go#构建实例数据
data =pd.DataFrame({'month':['2023-01-01', '2023-02-01', '2023-03-01', '2023-04-01', '2023-05-01', '2023-06-01', '2023-07-01', '2023-08-01', '2023-09-01','2023-10-01'],'tm':[74, 101, 139, 96, 182, 173, 74, 100, 86, 237],'dy':[58, 74, 101, 79, 110, 105, 70, 94, 87, 131],'ks':[11, 21, 27, 23, 28, 22, 17, 19, 16, 26]})
df=data.set_index('month',drop=True)
# 创建热力图
fig = go.Figure(data=go.Heatmap(z=df.corr(), x=df.columns, y=df.columns))
fig.update_layout(title='Correlation Heatmap')
fig.show()

进行可视化后,效果如下:
heatmap

桑基图:复杂关系的可视化呈现

import plotly.graph_objects as go# 创建面积图
fig = go.Figure(data=[go.Scatter(x=df['Date'], y=df['Value'], fill='tozeroy', mode='none')])
fig.update_layout(title='Area Chart')
fig.show()

面积图:趋势和变化的面面俱到

import plotly.graph_objects as go# 创建桑基图
fig = go.Figure(go.Sankey(node=dict(pad=15, thickness=20), link=dict(source=df['Source'], target=df['Target'], value=df['Value'])))
fig.update_layout(title='Sankey Diagram')
fig.show()

5. 与其他库结合应用:

5.1Plotly Express与Graph Objects的结合

在实际应用中,Plotly Express和Graph Objects可以结合使用,充分发挥它们各自的优势。

5.1.1 散点图(Scatter Plot):
import plotly.express as px
import plotly.graph_objects as go# 创建散点图(Express)
fig = px.scatter(df, x='X', y='Y', color='Category', size='Size', title='Scatter Plot')# 添加注释(Graph Objects)
annotations = [go.layout.Annotation(text='Highlight', x=highlight_x, y=highlight_y, showarrow=True, arrowhead=2, ax=0, ay=-40)]
fig.update_layout(annotations=annotations)fig.show()
5.1.2 热力图(Heatmap):
import plotly.express as px
import plotly.graph_objects as go#构建实例数据
data =pd.DataFrame({'month':['2023-01-01', '2023-02-01', '2023-03-01', '2023-04-01', '2023-05-01', '2023-06-01', '2023-07-01', '2023-08-01', '2023-09-01','2023-10-01'],'tm':[74, 101, 139, 96, 182, 173, 74, 100, 86, 237],'dy':[58, 74, 101, 79, 110, 105, 70, 94, 87, 131],'ks':[11, 21, 27, 23, 28, 22, 17, 19, 16, 26]})
df=data.set_index('month',drop=True)# 创建热力图(Express)
fig = px.imshow(df.corr(), x=df.columns, y=df.columns)# 添加颜色轴(Graph Objects)
colorbar = dict(title='Correlation')
fig.update_layout(coloraxis_colorbar=colorbar)
fig.update_layout(title='Correlation Heatmap')fig.show()

效果如下:
heat2

5.1.3 桑基图(Sankey Diagram):
import plotly.express as px
import plotly.graph_objects as go# 创建桑基图(Express)
fig = px.sankey(df, source='Source', target='Target', value='Value')# 修改图形属性(Graph Objects)
fig.update_layout(title='Sankey Diagram')
fig.update_traces(node=dict(pad=15, thickness=20))fig.show()

通过结合使用这两个接口,你可以更灵活地创建定制化的图表,满足不同场景的可视化需求。Plotly库的文档和示例提供了更多关于各种图表类型和配置选项的详细信息,因此你可以根据具体情况进行调整和拓展。

5.2 结合Pandas进行数据的直接可视化

Plotly Express与Pandas非常兼容,你可以直接使用Pandas的DataFrame进行绘图。这种结合使得从数据到图表的转换更加简便。

import plotly.express as px
import pandas as pd# 使用Pandas DataFrame创建图表
df = pd.DataFrame({'X': [1, 2, 3, 4],'Y': [10, 11, 12, 13],'Category': ['A', 'B', 'A', 'B']
})fig = px.scatter(df, x='X', y='Y', color='Category', title='Scatter Plot')
fig.show()

6. Dash应用示例:

通过Dash构建简单交互式仪表板的实例
利用回调函数实现图表的动态更新
除了在Notebook中创建交互式图表外,Plotly还提供了Dash,一个用于构建交互式仪表板的框架。Dash可以用于创建自定义的数据分析仪表板,使用户能够以交互式方式探索数据。

import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
import plotly.express as px
import pandas as pd  # 添加 pandas 导入# 创建Dash应用
app = dash.Dash(__name__)# 创建示例 DataFrame(请替换成您的实际数据)
data = {'X': [1, 2, 3, 4, 5],'Y': [10, 11, 12, 13, 14],'Size': [20, 15, 10, 5, 25],'Category': ['A', 'B', 'A', 'B', 'A']
}
df = pd.DataFrame(data)# 布局
app.layout = html.Div([dcc.Graph(id='scatter-plot'),dcc.Dropdown(id='dropdown-category',options=[{'label': category, 'value': category} for category in df['Category'].unique()],value=df['Category'].unique()[0],multi=False)
])# 回调函数
@app.callback(Output('scatter-plot', 'figure'),[Input('dropdown-category', 'value')]
)
def update_scatter_plot(selected_category):filtered_df = df[df['Category'] == selected_category]fig = px.scatter(filtered_df, x='X', y='Y', color='Category', size='Size', title='Scatter Plot')return fig# 运行应用
if __name__ == '__main__':app.run_server(debug=True)

运行以后,效果如下,与此同时,我们可以控制筛选器进行联动。

dash

在这个例子中,用户可以通过下拉菜单选择特定的类别,图表将根据选择的类别更新。Dash的强大之处在于你可以使用更复杂的布局、组件和回调函数来创建更丰富的仪表板。

7. 附录

7.1 官方文档链接:

  • Plotly Python图表库官方文档:在官方文档中,你可以找到有关Plotly库的详细信息,包括使用方法、图表类型、配置选项等。它提供了广泛的示例和案例,适合初学者和进阶用户。

7.2 在线教程链接:

  • Plotly Express 教程:Plotly Express的官方在线教程提供了对该高级接口的详细指南,以及许多交互式的示例。适合快速学习Plotly Express的基本用法。

  • Dash 用户指南:Dash框架的官方用户指南提供了创建交互式仪表板的详细说明,包括布局、组件、回调函数等方面的介绍。适合学习如何使用Dash构建定制的数据分析仪表板。

7.3 社区论坛链接:

  • Plotly社区论坛:Plotly的社区论坛是一个与其他用户交流、提问问题和分享经验的平台。你可以在这里找到关于特定问题的解答,了解其他用户的项目和经验。

  • Dash社区论坛:Dash框架有专门的社区论坛,用于讨论与Dash相关的问题、解决方案和项目。通过参与社区,你可以获取更多实用的建议和经验分享。

这些资源将帮助读者更深入地了解和掌握Plotly库的使用,以及构建交互式仪表板的技能。通过参与社区,读者还可以与其他使用Plotly的数据科学家和开发者建立联系,分享和学习最佳实践。

写在最后

通过本博客,读者将深入了解Plotly库的基础和高级功能,学会如何使用它创建丰富、交互式的数据可视化图表。不仅能够应对常见的数据分析任务,还能够通过Dash构建定制化的仪表板,为数据探索和展示提供更多可能性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/238605.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

6.8 Windows驱动开发:内核枚举Registry注册表回调

在笔者上一篇文章《内核枚举LoadImage映像回调》中LyShark教大家实现了枚举系统回调中的LoadImage通知消息,本章将实现对Registry注册表通知消息的枚举,与LoadImage消息不同Registry消息不需要解密只要找到CallbackListHead消息回调链表头并解析为_CM_NO…

助力android面试2024【面试题合集】

转眼间,2023年快过完了。今年作为口罩开放的第一年大家的日子都过的十分艰难,那么想必找工作也不好找,在我们android开发这一行业非常的卷,在各行各业中尤为突出。android虽然不好过,但不能不吃饭吧。卷归卷但是还得干…

STM32F407-14.3.9-01输出比较模式

输出比较模式 此功能用于控制输出波形,或指示已经过某一时间段。 当捕获/比较寄存器与计数器之间相匹配时,输出比较功能: ● 将为相应的输出引脚分配一个可编程值,该值由输出比较模式(TIMx_CCMRx 寄存器中的 OCxM⑦…

【QuickSort】单边快排思路及实现

思路: (1)首先定义一个递归函数:qucikSort(int [ ] arr,int l,int r)。函数的定义:给定一个数组arr,对它在[l,r]这个区间内的元素进行排序,从而使得整个数组在[l,r]这个区间内有序。 &#xff0…

蓝牙概述及基本架构介绍

蓝牙概述及基本架构介绍 1. 概述1.1 蓝牙的概念1.2 蓝牙的发展历程1.3 蓝牙技术概述1.3.1 Basic Rate(BR)1.3.2 Low Energy(LE) 2. 蓝牙的基本架构2.1 芯片架构2.2 协议架构2.2.1 官方协议中所展示的蓝牙协议架构2.2.1.1 全局分析2.2.1.2 局部分析 2.2.2…

Syntax Error: TypeError: Cannot read properties of undefined (reading ‘styles‘)

日志只有这一行,比较难排查 排查途径: 1、从上图找到唯一的文件输出output.js,断点查看堆栈信息,如下图,可以看到这个错误是由于哪个文件引起的 以为从App.vue中定位到原因了,其实也不对,继续…

SQL Server数据库部署

数据库简介 使用数据库的必要性 使用数据库可以高效且条理分明地存储数据,使人们能够更加迅速、方便地管理数据。数据库 具有以下特点。 》可以结构化存储大量的数据信息,方便用户进行有效的检索和访问。 》 可以有效地保持数据信息的一致性&#xff0c…

CGAL的三维曲面网格生成

1、介绍 此程序包提供了一个函数模板,用于计算三角网格,以近似表面。 网格化算法要求仅通过一个能够判断给定线段、直线或射线是否与曲面相交,并且如果相交则计算交点的oracle来了解待网格化的表面。这一特性使该软件包具有足够的通用性&…

读书笔记-《数据结构与算法》-摘要1[数据结构]

文章目录 [数据结构]1. String - 字符串2. Linked List - 链表2.1 链表的基本操作2.1.1 反转链表单向链表双向链表 2.1.2 删除链表中的某个节点2.1.3 链表指针的鲁棒性2.1.4 快慢指针 3. Binary Tree - 二叉树3.1 树的遍历3.2 Binary Search Tree - 二叉查找树 4. Queue - 队列…

人工智能-优化算法之学习率调度器

学习率调度器 到目前为止,我们主要关注如何更新权重向量的优化算法,而不是它们的更新速率。 然而,调整学习率通常与实际算法同样重要,有如下几方面需要考虑: 首先,学习率的大小很重要。如果它太大&#xf…

acwing算法基础之动态规划--数位统计DP、状态压缩DP、树形DP和记忆化搜索

目录 1 基础知识2 模板3 工程化 1 基础知识 暂无。。。 2 模板 暂无。。。 3 工程化 题目1:求a~b中数字0、数字1、…、数字9出现的次数。 思路:先计算1~a中每位数字出现的次数,然后计算1~b-1中每位数字出现的次数,两个相减即…

7、单片机与W25Q128(FLASH)的通讯(SPI)实验(STM32F407)

SPI接口简介 SPI 是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。 SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根…