013 OpenCV copyMakeBorder(padding)

目录

一、环境

二、原理

三、完整代码


一、环境

本文使用环境为:

  • Windows10
  • Python 3.9.17
  • opencv-python 4.8.0.74

二、原理

cv.copyMakeBorder是OpenCV库中的一个函数,用于在图像周围添加边框(padding)。这个函数可以用于图像的预处理、增强等任务。它的基本语法如下:

dst = cv.copyMakeBorder(src, top, bottom, left, right, borderType, value)
  • src:输入图像,可以是彩色或灰度图像。
  • topbottomleftright:分别表示上、下、左、右方向上的边框宽度。如果设置为负数,则表示自动计算边框宽度。
  • borderType:边框类型,可以是上述提到的任意一种类型。
  • value:边框的颜色值。对于彩色图像,需要提供一个包含三个元素的元组(例如:(0, 0, 0)表示黑色);对于灰度图像,需要提供一个单一的数值(例如:0表示黑色)。

其中,cv.copyMakeBorder支持以下几种边框类型:

  1. cv.BORDER_CONSTANT:常数填充,即用一个固定的值填充边框。
  2. cv.BORDER_REFLECT:反射填充,即用图像边界的像素值进行填充。
  3. cv.BORDER_REFLECT_101:反射填充,与cv.BORDER_REFLECT类似,但使用不同的边界像素值。
  4. cv.BORDER_WRAP:循环填充,即用图像边界的像素值进行填充,形成一个环状的效果。
  5. cv.BORDER_REPLICATE:复制填充,即用图像边界的像素值进行填充。
  6. cv.BORDER_DEFAULT:默认填充,即用0填充边框。

三、完整代码

注:执行下面代码,图像显示后:

  • 按下r是原图,
  • 按下c是边界padding后的效果图,
  • 按下esc退出
import sys
from random import randint
import cv2 as cv
def main(argv):borderType = cv.BORDER_CONSTANTwindow_name = "copyMakeBorder Demo"src = cv.imread(cv.samples.findFile('data/lena.jpg'), cv.IMREAD_COLOR)## [create_window]cv.namedWindow(window_name, cv.WINDOW_AUTOSIZE)top = int(0.05 * src.shape[0])  # shape[0] = rowsbottom = topleft = int(0.05 * src.shape[1])  # shape[1] = colsright = leftwhile 1:# 待填充的随机颜色value = [randint(0, 255), randint(0, 255), randint(0, 255)]dst = cv.copyMakeBorder(src, top, bottom, left, right, borderType, None, value)cv.imshow(window_name, dst)c = cv.waitKey(500)if c == 27:breakelif c == 99: # 99 = ord('c')borderType = cv.BORDER_CONSTANTelif c == 114: # 114 = ord('r')borderType = cv.BORDER_REPLICATEreturn 0
if __name__ == "__main__":main(sys.argv[1:])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/238946.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入理解前端路由:构建现代 Web 应用的基石(上)

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

python+pytest接口自动化(6)-请求参数格式的确定

我们在做接口测试之前,先需要根据接口文档或抓包接口数据,搞清楚被测接口的详细内容,其中就包含请求参数的编码格式,从而使用对应的参数格式发送请求。例如某个接口规定的请求主体的编码方式为 application/json,那么在…

使用YOLOv8训练自己的数据集

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制 拉取项目 git clone https://github.com/ultralytics/ultralytics安装依赖 cd ultralytics pip install -r requirement.txt pip instal…

阿里云开源通义千问720亿参数模型,性能超越大部分商用闭源大模型

12月1日,阿里云举办通义千问发布会,开源通义千问720亿参数模型Qwen-72B。Qwen-72B在10个权威基准测评创下开源模型最优成绩,成为业界最强开源大模型,性能超越开源标杆Llama 2-70B和大部分商用闭源模型。未来,企业级、科…

如何快速看懂市场行情?

一、看大盘指数 咱们平时所说的大盘其实指的就是上证指数,它是整个市场的晴雨表。大盘涨了,个股跟着上涨的概率就大,大盘跌了,个股被拖累下跌的概率也大。所以,要想在股市中尝到甜头,大盘分析是少不了滴&am…

ChatGPT成为“帮凶”:生成虚假数据集支持未知科学假设

ChatGPT 自发布以来,就成为了大家的好帮手,学生党和打工人更是每天都离不开。 然而这次好帮手 ChatGPT 却帮过头了,莫名奇妙的成为了“帮凶”,一位研究人员利用 ChatGPT 创建了虚假的数据集,用来支持未知的科学假设。…

(二) Windows 下 Sublime Text 3 安装离线插件 Anaconda

1 下载 Sublime Text 3 免安装版 Download - Sublime Text 2 下载 Package Control,放到 Sublime Text Build 3211\Data\Installed Packages 目录下。 Installation - Package Control 3 页面搜索 anaconda anaconda - Search - Package Control Anaconda - Pac…

SQL Server 2016(在Products表中查询数据)

1、实验环境。 以实验案例一的结果为环境。 2、需求描述。 【1】查询成本低于10元的水果信息。 【2】将所有蔬菜的成本上调1源。 【3】查询成本大于3元并小于40元的产品信息,并按照成本从高到低的顺序显示结果。 【4】查询成本最高的5个产品信息。 【5】查询有…

Mybatis 的操作(续集)

Mybatis 是一款优秀的 持久性 框架,用于简化 JDBC 的开发 持久层 : 指的就是持久化操作的层,通常指数据访问层(dao),是用来操作数据库的 简单来说 Mybatis 是更简单完成程序和数据库交互的框架 Mybatis 的写法有两种 : 1.xml 2.注解 这两者各有利弊,后面进行总结 Mybati…

Vue3中的组合式API的详细教程和介绍

文章目录 前言介绍组合式 API 基础setup 组件选项 带 ref 的响应式变量生命周期钩子注册内部 setupwatch 响应式更改独立的 computed 属性后言 前言 hello world欢迎来到前端的新世界 😜当前文章系列专栏:vue.js 🐱‍👓博主在前端…

UniGui应用自适应PC和Mobile

先按常规方式创建UniGui PC端应用,然后按下图添加Mobile MainForm和Mobile Login Form(需要时),添加后打开网址时UNIGUI应用会根据客户端类型自动调用PC或移动端模式。

利用python连接MySQL数据库并执行相关sql操作

一、新建MySQL数据库 1.启动MySQL服务 打开phpstudy,开启MySQL服务。如果开启失败的话,可以打开任务管理器,把正在运行的mysqld服务的进程进行关闭,再次打开MySQL服务即可启动。 2.新建MySQL数据库 选择数据库,点击…