目录
一、lambda表达式语法
1.lambda表达式书写格式
2. lambda表达式各部分说明
3.捕获列表说明
二、lambda表达式的一些使用案列
1.借助auto将lambda表达式赋值给一个变量来直接调用。
2.对于类似于sort对自定义类型排序等情况时使用lambda可简化代码
以前我们对自定义类型排序需要写一个函数,或者仿函数来实现比较方法,不太方便
学了lambda表达式我们可以这样写
三、函数对象(仿函数)与lambda表达式(探究lambda的底层)
一、lambda表达式语法
1.lambda表达式书写格式
[capture-list] (parameters) mutable -> return-type { statement}
2. lambda表达式各部分说明
-
[capture-list] : 捕捉列表,该列表总是出现在lambda函数的开始位置,编译器根据[]来判断接下来的代码是否为lambda函数,捕捉列表能够捕捉上下文中的变量供lambda函数使用。
-
(parameters):参数列表。与普通函数的参数列表一致,如果不需要参数传递,则可以连同()一起省略
-
->returntype:返回值类型。用追踪返回类型形式声明函数的返回值类型,没有返回值时此部分可省略。返回值类型明确情况下,也可省略,由编译器对返回类型进行推导。
-
{statement}:函数体。在该函数体内,除了可以使用其参数外,还可以使用所有捕获到的变量。
注意:
在lambda函数定义中,参数列表和返回值类型都是可选部分,而捕捉列表和函数体可以为
空。因此C++11中最简单的lambda函数为:[]{}; 该lambda函数不能做任何事情。
3.捕获列表说明
捕捉列表描述了上下文中那些数据可以被lambda使用,以及使用的方式传值还是传引用。
- [var]:表示值传递方式捕捉变量var
- [=]:表示值传递方式捕获所有父作用域中的变量(包括this)
- [&var]:表示引用传递捕捉变量var
- [&]:表示引用传递捕捉所有父作用域中的变量(包括this)
- [this]:表示值传递方式捕捉当前的this指针
注意:
a. 父作用域指包含lambda函数的语句块
b. 语法上捕捉列表可由多个捕捉项组成,并以逗号分割。
比如: [=, &a, &b]:以引用传递的方式捕捉变量a和b,值传递方式捕捉其他所有变量[&,a, this]:值传递方式捕捉变量a和this,引用方式捕捉其他变量
c. 捕捉列表不允许变量重复传递,否则就会导致编译错误。
比如:[=, a]:=已经以值传递方式捕捉了所有变量,捕捉a重复
d. 在块作用域以外的lambda函数捕捉列表必须为空。
e. 在块作用域中的lambda函数仅能捕捉父作用域中局部变量,捕捉任何非此作用域或者非局部变量都会导致编译报错。
f. lambda表达式之间不能相互赋值,即使看起来类型相同。
二、lambda表达式的一些使用案列
1.借助auto将lambda表达式赋值给一个变量来直接调用。
int main()
{// 最简单的lambda表达式, 该lambda表达式没有任何意义[] {};// 省略参数列表和返回值类型,返回值类型由编译器推导为intint a = 3, b = 4;[=] {return a + 3; };// 省略了返回值类型,无返回值类型auto fun1 = [&](int c) {b = a + c; };fun1(10)cout << a << " " << b << endl;// 各部分都很完善的lambda函数auto fun2 = [=, &b](int c)->int {return b += a + c; };cout << fun2(10) << endl;// 复制捕捉xint x = 10;auto add_x = [x](int a) mutable { x *= 2; return a + x; };cout << add_x(10) << endl;return 0;
}
2.对于类似于sort对自定义类型排序等情况时使用lambda可简化代码
以库里面的sort的使用为例,以前我们对自定义类型排序,需要我们定义排序时的比较规则,而有了lambda表达式,就有了新的玩法。
以前我们对自定义类型排序需要写一个函数,或者仿函数来实现比较方法,不太方便
struct Goods
{string _name; // 名字double _price; // 价格int _evaluate; // 评价Goods(const char* str, double price, int evaluate):_name(str), _price(price), _evaluate(evaluate){}
};
//写一个仿函数来实现比较方法
struct ComparePriceLess
{bool operator()(const Goods& gl, const Goods& gr){return gl._price < gr._price;}
};
//写一个仿函数来实现比较方法
struct ComparePriceGreater
{bool operator()(const Goods& gl, const Goods& gr){return gl._price > gr._price;}
};
int main()
{vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,3 }, { "菠萝", 1.5, 4 } };sort(v.begin(), v.end(), ComparePriceLess());sort(v.begin(), v.end(), ComparePriceGreater());
}
学了lambda表达式我们可以这样写
struct Goods
{string _name; // 名字double _price; // 价格int _evaluate; // 评价Goods(const char* str, double price, int evaluate):_name(str), _price(price), _evaluate(evaluate){}
};
int main()
{vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,3 }, { "菠萝", 1.5, 4 } };//按照价格进行升序sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {return g1._price < g2._price; });//按照价格进行降序sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {return g1._price > g2._price; });//按照评价进行升序sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {return g1._evaluate < g2._evaluate; });//按照评价进行降序sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {return g1._evaluate > g2._evaluate; });
}
三、函数对象(仿函数)与lambda表达式(探究lambda的底层)
函数对象,又称为仿函数,即可以想函数一样使用的对象,就是在类中重载了operator()运算符的
类对象。
class Rate
{
public:Rate(double rate) : _rate(rate){}double operator()(double money, int year){return money * _rate * year;}
private:double _rate;
};
int main()
{// 函数对象double rate = 0.49;Rate r1(rate);r1(10000, 2);// lambdaauto r2 = [=](double monty, int year)->double {return monty * rate * year;};r2(10000, 2);return 0;
}
从使用方式上来看,函数对象与lambda表达式完全一样。
函数对象将rate作为其成员变量,在定义对象时给出初始值即可,lambda表达式通过捕获列表可
以直接将该变量捕获到。
实际在底层编译器对于lambda表达式的处理方式,完全就是按照函数对象的方式处理的,即:如
果定义了一个lambda表达式,编译器会自动生成一个类,在该类中重载了operator()。
完结!