模电笔记。。。。

模电

2.8 蜂鸣器

按照蜂鸣器驱动方式分为有源蜂鸣器和无源蜂鸣器

有源的有自己的震荡电路,无源的要写代码控制。

里面有个线圈,相当于电感,储能,通直隔交。

蜂鸣器的参数:额定电压,工作电压,消耗电流。

有源蜂鸣器:

https://item.szlcsc.com/335364.html

无源蜂鸣器

https://item.szlcsc.com/97460.html

可以使用万用表区分有源与无源。

调到欧姆档,有源的没有阻值,无源的有阻值。

2.9 电源

2.9.1 电池

电池参数:

额定电压。

电池容量:mAh。

不可充电电池

纽扣电池

电池:https://item.szlcsc.com/93276.html

电池盒:https://item.szlcsc.com/1049689.html

可反复充电电池

电池:https://item.szlcsc.com/3588015.html

电池盒:https://item.szlcsc.com/3446919.html

18650:说明电池直径为18,长度为65,0表示是圆柱形电池。

2.9.2 稳压电源芯片

它是电子芯片,能将不稳定的电源电压,通过内部的反馈控制电路,转化为稳定的电路。

稳压电源的参数:

输入电压

输出电压

输出电流

7805稳压电源芯片

输入35v输出5v 电流1.5A

https://item.szlcsc.com/4197.html

AMS1117-3.3 稳压电源芯片

https://item.szlcsc.com/8435863.html

稳压电源芯片比较容易发热,比较好的散热效果就是加散热片

散热片

https://item.szlcsc.com/5057.html?mro=1

2.10 万用表

测东西,会用就行

3 模拟电路基础

3.1 模拟电路概述

主要是用晶体管(三级管)和场效应管(MOS管)做开关电路(继电器其封装体积较大,不适合用在集成电路里),至于信号的放大,滤波等是嵌入式硬件工程师的事情。

在嵌入式工程师的实际开发中,不管是三极管还是MOS管,使用的开关特性比较多,给0,给1,至于放大,饱和啥的用的特别少。

3.2 半导体器件基本原理

3.2.1 二极管

二极管的单向导通
在这里插入图片描述

N极带负电,与负电极相排斥,电子会经过P极到正极,会形成源源不断的电流。

在这里插入图片描述

正极与N极相吸引,电子会朝着正极,不会向P极,所以不会形成电流,反而会导致,而且N中的电子吸引走了,也是空穴,空穴和空穴会形成排斥。

0.7V会导通,过了0.7v会随着电压增大电流增大,反向会击穿。

发光二极管

https://item.szlcsc.com/3136207.html

数码管 4位0.36英寸红色 共阴极

https://item.szlcsc.com/11252.html

8*8点阵 共阴LED

https://item.szlcsc.com/54094.html

3.2.2 晶体管(三极管)

两个PN结连在一起。

在这里插入图片描述

NPN型三极管

在这里插入图片描述

基区的浓度很低,c区电子也很少。

在这里插入图片描述

上面加电,使空穴满,漫过后电子会到达c区,因为下面接电源,所以会形成源源不断的电流。流过基区的电流越大,流到基区的自由电子越多。这就是三极管小电流控制大电流的原理。

开关作用:

在这里插入图片描述

当Vce > Vbe。当Vbe < 0.5v ,Ib=0,三极管处于截止状态。

Vce >= Vbe,当Vbe > 0.5V时,BE会有电流流过,CE也会有电流流过。Ib的电流越大,B端的阀门开口就越大,那么联动C端的阀口也就越大,此时三极管处于放大状态。

继续给be增压,导致b口的电流继续增大,直至阀门继续打开直到完全打开,完全打开后Vbe > Vce,不论怎样增加Vbe的电压,都不能使Ib增加,从而Ic也不能增加,这就是处于饱和状态。

三极管NPN 8050

https://item.szlcsc.com/3119723.html

3.2.3 场效应管(MOS管)

场效应管控制电场。

在这里插入图片描述

只用记住一个绝缘栅型场效应管-N沟道-增强型。

场效应管和三极管的作用都是一样的,都是放大作用。从能力上场效管更强一点。

在这里插入图片描述

给栅极一个高电平,MOS就会被导通。

给栅极加一个低电平,MOS就截至。

在这里插入图片描述

在这里插入图片描述

直接给源极和漏极之间输入电压,MOS管是不导通的,

因为P区中间的自由电子浓度太低。

为了让MOS管导通,可以给栅极施加一个电压。

这样栅极金属就会产生一个电场,P区的自由电子就会被吸引过来。但是由于有绝缘层,推到N与N之间,

在这里插入图片描述

这样电子浓度变高,MOS管就会被导通。

断点后,电子散去,MOS管就截止了。

N沟道符号

在这里插入图片描述

P沟道符号:

在这里插入图片描述

增强型场效应管N沟道

https://item.szlcsc.com/249548.html

3.3 模拟电路实例

3.3.1 光感灯

电位器和光感电阻构成分压电路。当光照强度减少,光感电阻阻值增加,三极管基极电压增加,三极管导通,LED灯发光。当光照强度增加,光感电阻阻值减少,三级管基极电压降低,三极管关闭,LED灯灭掉。

在这里插入图片描述

4 典型电路实践

4.1 电阻

4.1.1 压敏电阻

TVR10201-V:https://so.szlcsc.com/global.html?k=TVR10201&hot-key=LM358
10D471K:https://item.szlcsc.com/9271.html

在这里插入图片描述

当加在压敏电阻上电压低于阈值,相当于一个无穷大的电阻,等同于一个断开的开关。

当电路输入电压过大,压敏电阻导通,而它电阻绩效,就相当于一个短路电源,保护后继电路,同时通过保险丝的电流极大,导致保险丝熔断,电路断开。

4.1.2 上拉电阻

电阻与一个固定的电源相连,使其电压在空闲的状态保持在高电平。

4.1.3 下拉电阻

将电阻接地,使其电压在空闲状态保持在低电平。

4.1.4 限流电阻

将电流大小限制到元器件的正常工作电流。

https://item.szlcsc.com/3583390.html

4.1.5 零欧姆电阻

欧姆电阻实际是电阻值很小的电阻。正因为有阻值,也就和常规贴片电阻一样有误差精度这个指标。

https://item.szlcsc.com/116571.html

零欧姆电阻的使用场景

  1. 测某个电路的电流,串一个零欧姆电阻,就可以测电流。

  2. 在单面板布线时,如果实在布不过去了,也可以加一个0欧的电阻。

4.2 电容

4.2.1 滤波

单片机上电的瞬间到稳定供电,会产生很多杂波,利用电容隔直通交的特性,可以将杂波过滤掉。

4.2.2 耦合电容

耦合就是两个电路之间的连接。

利用电容隔直通交的特性,保留电路中想要传输的高频信号,去除直流信号。

在这里插入图片描述

4.2.3 旁路电容

利用电容通交隔直的特性,滤除电路中的高频信号。

旁路电容一般紧挨着芯片,因为距离太远,电路会受到噪声或者电磁的干扰。

5 附录

5.1 常用电气符号

电气符号含义
VCC电源正极
GND电源地
L火线
N地线
AC交流
DC直流
M电动机
G发电机

5.1 常用电气符号

电气符号含义
VCC电源正极
GND电源地
L火线
N地线
AC交流
DC直流
M电动机
G发电机

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/256184.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力扣每日一题day29[102. 二叉树的层序遍历]

给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;[[3],[9,20],[15,7]]示例 2&#xff1a; 输入&…

SpringBoot集成系列--xxlJob

文章目录 一、搭建调度中心xxl-job-admin1、下载项目2、调整项目参数3、执行初始化数据库SQL4、启动项目5、访问 二、集成步骤1、添加xxl-job的依赖2、添加xxl-job的依赖3、配置执行器4、创建执行器5、开发任务1&#xff09;方式1&#xff1a;BEAN模式&#xff08;方法形式&…

202350读书笔记|《再别康桥:徐志摩诗选》——微风起,清芬酝藉,不减荼

202350读书笔记|《再别康桥&#xff1a;徐志摩诗选》——微风起&#xff0c;清芬酝藉&#xff0c;不减荼 《再别康桥&#xff1a;徐志摩诗选》我觉得有时候诗人是很狂热的&#xff0c;上头的感觉。 有几首很喜欢&#xff0c;节选如下&#xff1a; 偶然 我是天空里的一片云&…

ESP32-Web-Server编程- 在 Web 上开发动态纪念册

ESP32-Web-Server编程- 在 Web 上开发动态纪念册 概述 Web 有很多有趣的玩法&#xff0c;在打开网页的同时送她一个惊喜。 需求及功能解析 本节演示在 ESP32 上部署一个 Web&#xff0c;当打开对应的网页时&#xff0c;将运行动态的网页内容&#xff0c;显示炫酷的纪念贺词…

<蓝桥杯软件赛>零基础备赛20周--第9周--前缀和与差分

报名明年4月蓝桥杯软件赛的同学们&#xff0c;如果你是大一零基础&#xff0c;目前懵懂中&#xff0c;不知该怎么办&#xff0c;可以看看本博客系列&#xff1a;备赛20周合集 20周的完整安排请点击&#xff1a;20周计划 每周发1个博客&#xff0c;共20周&#xff08;读者可以按…

用户案例|Milvus 助力 Credal.AI 实现 GenAI 安全与可控

AIGC 时代&#xff0c;企业流程中是否整合人工智能&#xff08;AI&#xff09;对于的企业竞争力至关重要。然而&#xff0c;随着 AI 不断发展演进&#xff0c;企业也在此过程中面临数据安全管理、访问权限、数据隐私等方面的挑战。 为了更好地解决上述问题&#xff0c;Credal.A…

【华为数据之道学习笔记】3-4主数据治理

主数据是参与业务事件的主体或资源&#xff0c;是具有高业务价值的、跨流程和跨系统重复使用的数据。主数据与基础数据有一定的相似性&#xff0c;都是在业务事件发生之前预先定义&#xff1b;但又与基础数据不同&#xff0c;主数据的取值不受限于预先定义的数据范围&#xff0…

Prometheus 发现机制和告警

1.服务发现 Prometheus Server的数据抓取工作于Pull模型&#xff0c;因而&#xff0c;它必需要事先知道各Target的位置&#xff0c;然后才能从相应的Exporter或Instrumentation中抓取数据。在不同的场景下&#xff0c;需要结合不同的机制来实现对应的数据抓取目的。 对于小型的…

画好一张规范的原理图,这些点你可要注意了!

不光是代码有可读性的说法&#xff0c;原理图也有。很多时候原理图不仅仅是给自己看的&#xff0c;也会给其它人看&#xff0c;如果可读性差&#xff0c;会带来一系列沟通问题。所以&#xff0c;要养成良好习惯&#xff0c;做个规范的原理图。此外&#xff0c;一个优秀的原理图…

挑选分支中某一个提交进行合并

复制提交的哈希(sha-1)值 挑选提交 git cherry-pick 复制过来的哈希值 若有冲突&#xff0c;解决冲突&#xff0c;没有冲突&#xff0c;即合并完成

快速认识什么是:Docker

Docker&#xff0c;一种可以将软件打包到容器中并在任何环境中可靠运行的工具。但什么是容器以及为什么需要容器呢&#xff1f;今天就来一起学快速入门一下Docker吧&#xff01;希望本文对您有所帮助。 假设您使用 Cobol 构建了一个在某种奇怪风格的 Linux 上运行的应用程序。…

API接口使用方法(封装好的电商平台)

为了进行此平台API的调用&#xff0c;首先我们需要做下面几件事情。 1、 获取一个KEY。 点击获取 2、 参考API文档里的接入方式和示例。 3、查看测试工具是否有需要的接口&#xff0c;响应实例的返回字段是否符合参数要求。 4、利用平台的文档中心和API测试工具&#xff0c…