爱智EdgerOS之深入解析AI图像引擎如何实现AI视觉开发

一、前言

  • AI 视觉是为了让计算机利用摄像机来替代人眼对目标进行识别,跟踪并进一步完成一些更加复杂的图像处理。这一领域的学术研究已经存在了很长时间,但直到 20 世纪 70 年代后期,当计算机的性能提高到足以处理图片这样大规模的数据时,计算机视觉才得到了正式的关注和发展。
  • 现在 AI 视觉已经在我们的生活中无处不在,从日常使用的二维码到人脸识别直至更专业的病理分析。AI 视觉的应用所渗透到的领域远比我们想象的更加广泛。虽然 AI 视觉的应用已经随处可见,但如果想要自己去开发一套属于自己的 AI 视觉应用,对于一个非专业领域的开发者还是非常复杂的,单从最基础的算法训练就要消耗掉大量的精力与时间。
  • EdgerOS 系统则内置了多种不同方向的 AI 引擎,使开发者可以实现快速实现 AI 视觉领域的开发,极大的降低了开发周期。开发者可以根据自己的需求对不同 AI 引擎进行组合达到自己想要的业务实现。本文将带领大家一起了解 EdgerOS 中常用的两款 AI 引擎。

二、FaceNN

  • FaceNN 是 EdgerOS 所提供的一个针对人脸识别的 AI 处理引擎,它可以从视频流或者图片中捕捉到人脸的具体位置,还可以根据人脸的特征来分析出对应人物的特征信息如:年龄、性别、情感等一些具体信息。
  • FaceNN 引擎封装在 “facenn” 模块中,可以通过以下方式来导入:
const facenn= require('facenn');
  • FaceNN 引擎提供了极简的接口,这使得开发者可以更加快速的实现关于人脸的 AI 处理,同时也降低了巨大的学习成本。
  • 首先需要明确一下被识别的图像格式,目前 FaceNN 引擎支持如下格式:
类型说明
facenn.PIX FMT RGB24RGB24 pixel format
facenn.PIX FMT BGR2RGB24BGR24 to RBG24 pixel format
facenn.PIXFMTGRAY2RGB24Grayscale to RGB24 pixel format
facenn.PIX FMT RGBA2RGB24RGBA to RGB24 pixel format
  • facenn.detect(videoBuf, attribute[, quick])
    • attribute {Object} 图像格式
      • width {Integer} 图像宽度
      • height {Integer} 图像高度
      • pixelFormat {Integer} 图像格式
    • quick {Boolean} 是否启用快速模式
  • 返回信息:
    • score {Number} 人脸的覆盖率
    • x0 {Integer} 左上角 x 的位置
    • y0 {Integer} 左上角 y 的位置
    • x1 {Integer} 右下角 x 的位置
    • y1 {Integer} 右下角 y 的位置
    • area {Number} Area,非快速模式
    • regreCoord {Array} RegreCoord,非快速模式
    • landmark {Array} Landmark,非快速模式
  • facenn.detect 可以识别出一帧图像数据中的人脸个数以及人脸所在图像中的位置。
  • facenn.feature(videoBuf, attribute, faceInfo[, extra])
    • videoBuf {Buffer} 图像格式
    • attribute {Object} 图像属性
      • width {Integer} 图像宽度
      • height {Integer} 图像高度
      • pixelFormat {Integer} 图像格式
    • extra {Object} 需要扩展的人脸信息 default: undefined
  • 返回信息:
    • keys {Array} Face keys
    • male {Boolean} 性别, 需要在扩展中选择
    • age {Integer} Age, 需要在扩展中选择
    • emotion {String} Emotion, 需要在扩展中选择
    • emotion 可分辨情绪包括: angry,disgust,fear,happy,sad,surprise,neutral
    • live {Number} 存活率,需要在扩展中选择
  • facenn.feature 可以识别出一张人像的具体信息,例如性别,情绪年龄等。
  • facenn.compare(faceKeys1, faceKeys2)
    • faceKey1 {Object} Face keys 1
    • faceKey2 {Object} Face keys 2
  • 返回信息:
    • 相似值 0.0 ~ 1.0
    • facenn.compare 可以比对出两张人脸信息的相似值。
  • 接下来用一下两张图片来尝试使用 FaceNN 引擎,读取其中的特征信息:

在这里插入图片描述
在这里插入图片描述

const imagecodec = require('imagecodec'); // 图片解析模块
const facenn = require('facenn'); function facennHandel(imagePath, imagePath2) {const image1 = imagecodec.decode(imagePath, imagecodec.COMPONENTS_RGB)const imageInfo1 = imagecodec.info(imagePath)const videoAttrFacenn = { width: imageInfo1.width, height: imageInfo1.height, pixelFormat: facenn.PIX_FMT_RGB24 }const faceInfos = facenn.detect(image1.buffer, videoAttrFacenn);const facennFeature = facenn.feature(image1.buffer, videoAttrFacenn, faceInfos[0], {male: true,age: true,emotion: true,live: true})console.log(`image1.png  male:${facennFeature.male} age:${facennFeature.age} emotion:${facennFeature.emotion} live:${facennFeature.live}`)const image2 = imagecodec.decode(imagePath2, imagecodec.COMPONENTS_RGB)const imageInfo2 = imagecodec.info(imagePath2)const videoAttrFacenn2 = { width: imageInfo2.width, height: imageInfo2.height, pixelFormat: facenn.PIX_FMT_RGB24 }const faceInfos2 = facenn.detect(image2.buffer, videoAttrFacenn2);const facennFeature2 = facenn.feature(image2.buffer, videoAttrFacenn2, faceInfos2[0], {male: true,age: true,emotion: true,live: true})console.log(`image2.png  male:${facennFeature2.male} age:${facennFeature2.age} emotion:${facennFeature2.emotion} live:${facennFeature2.live}`)const compareNum = facenn.compare(facennFeature.keys, facennFeature2.keys)console.log(compareNum)
}facennHandel('/image/image1.png', '/image/image2.png')// 输出如下:
// [JSRE-CON]image1.png  male:false age:21 emotion:neutral live:0.9843575954437256
// [JSRE-CON]image2.png  male:true age:58 emotion:sad live:0.33667701482772827
// [JSRE-CON]-0.1453045904636383

三、ThingNN

  • ThingNN 是 EdgerOS 可以从视频流或者图片中捕捉到具体事物,分别标记事务所在图片中的具体位置。
  • ThingNN 引擎封装在 “thingnn” 模块中,可以通过以下方式来导入:
const facenn= require('thingnn');
  • 同样也需要明确一下被识别的图像格式,目前 ThingNN 引擎支持如下格式:
类型说明
thingnn.PIX FMT_ RGB24RGB24 pixel format
thingnn.PIX_FMT_BGR2RGB24BGR24 to RBG24 pixel format
thingnn.PIX FMT GRAY2RGB24Grayscale to RGB24 pixel format
thingnn.PIX FMT RGBA2RGB24RGBA to RGB24 pixel format
  • 接下来看看 ThingNN 接口提供了那些接口:
  • thingnn.detect(videoBuf, attribute)
    • videoBuf {Buffer} 图像格式
    • attribute {Object} 图像属性
    • width {Integer} 图像宽度
    • height {Integer} 图像高度
    • pixelFormat {Integer} 图像格式
  • 返回信息:
    • className{Array} Face keys
    • prob{Boolean} 性别, 需要在扩展中选择
    • x0 {Integer} 左上角 x 的位置
    • y0 {Integer} 左上角 y 的位置
    • x1 {Integer} 右下角 x 的位置
    • y1 {Integer} 右下角 y 的位置
  • 目前 ThingNN 模块所支持可识别的类型都有:
background, aeroplane, bicycle, bird, boat,bottle, bus, car, cat, chair,cow, diningtable, dog, horse,motorbike,person, pottedplant,sheep, sofa, train, tvmonitor
  • thingnn.detect 可以获取到图片中事物的类别以及所在图像中的位置。
  • thingnn.identify(videoBuf, attribute, thingInfo)
    • videoBuf {Buffer} 图像格式
    • attribute {Object} 图像属性
    • width {Integer} 图像宽度
    • height {Integer} 图像高度
    • pixelFormat {Integer} 图像格式
    • thingInfo {Object} 事务对象
  • 返回信息:具体事物的名称,thingnn.identify 可以获取到具体 thinginfo 的类型名称。
  • 以下图为例子作为演示:

在这里插入图片描述

const imagecodec = require('imagecodec'); // 图片解析模块
const facenn = require('facenn'); function licplatennHandel(imagePath) {
const imageInfo = imagecodec.info(imagePath)
const imageBuf= imagecodec.decode(imagePath, imagecodec.COMPONENTS_RGB).buffer
let videoAttrThingnn = { width: imageInfo.width, height: imageInfo.height, pixelFormat: thingnn.PIX_FMT_BGR24 }const thingInfos = thingnn.detect(imageBuf, videoAttrThingnn);thingInfos.forEach((thingInfo, index) => {const thingName = thingnn.identify(imageBuf, videoAttrThingnn, thingInfo);console.log(index,thingInfo.className, thingName)})
}licplatennHandel('/image/dog.png')// 输出如下:
// [JSRE-CON]0 dog Labrador retriever

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/257487.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

实验3.5 路由器的单臂路由配置

实验3.5 路由器的单臂路由配置 一、任务描述二、任务分析三、具体要求四、实验拓扑五、任务实施1.SWA的基本配置2.RA的基本配置3.在RA上查看接口状态 六、任务验收七、任务小结 一、任务描述 某公司对部门划分了需VLAN之后,发现两个部门之间无法通信,但…

Kubernetes集群安装高可用postgresql

Kubernetes集群安装高可用postgresql Bitnami 提供的 postgresql-ha 解决方案是一个预配置的、高可用的 PostgreSQL 集群配置,通常部署在 Kubernetes 环境中。它使用了一些关键技术和组件来实现数据库的高可用性。,Bitnami postgresql-ha 主要采用以下构…

【PCB设计】嘉立创EDA器件3D模型导入AD的方法

嘉立创EDA器件3D模型导入AD的方法 一、嘉立创EDA导出3D模型二、CAD编辑3D模型三、AD中加载3D模型 一、嘉立创EDA导出3D模型 在嘉立创EDA中找到对应的元器件,并生成PCB,选择导出3D文件 导出元件step模型 二、CAD编辑3D模型 用FreeCAD打开模型 删除…

pytorch的二次索引矩阵无法赋值问题

最近在研究中发现torch一个问题,即torch的二次索引的矩阵无法赋值。 具体来说,给定相同的初始常数矩阵a和iou_target矩阵, 以及另一iou矩阵,直接赋值是没问题的。 然而,当对iou_target矩阵进行二次索引时,即idx矩阵和…

【小白专用】MySQL创建数据库和创建数据表

1.在Windows开始搜索输入Mysql,并选择第一个打开。 2.输入安装时的密码 3.说明安装成功。 二、创建数据库 1. 连接 MySQL 输入 mysql -u root -p 命令,回车,然后输入 MySQL 的密码(不要忘记了密码),再回车,就连接上 MySQL 了。 …

leetcode做题笔记1466. 重新规划路线

n 座城市,从 0 到 n-1 编号,其间共有 n-1 条路线。因此,要想在两座不同城市之间旅行只有唯一一条路线可供选择(路线网形成一颗树)。去年,交通运输部决定重新规划路线,以改变交通拥堵的状况。 路…

全光谱台灯对孩子眼睛好吗?备考护眼台灯推荐

全光谱台灯通常被认为对孩子的眼睛更好,因为它们能够提供更接近自然光的光谱。与传统的白炽灯或荧光灯相比,全光谱台灯能够提供更均匀、真实的光线,减少眼睛的疲劳和视觉疲劳。此外,全光谱台灯还可以提供更好的颜色还原&#xff0…

vue 实现返回顶部功能-指定盒子滚动区域

vue 实现返回顶部功能-指定盒子滚动区域 html代码css代码返回顶部显示/隐藏返回标志 html代码 <a-icontype"vertical-align-top"class"top"name"back-top"click"backTop"v-if"btnFlag"/>css代码 .top {height: 35px;…

PLC无线通讯终端在二氧化碳注气开采石油中的应用

一、应用背景 在传统的石油开采过程中&#xff0c;只能采收到地下原油储层中约30%至40%的石油。二氧化碳强化石油开采技术是一种利用二氧化碳来提高石油采收率的技术。将工业尾气中的二氧化碳被捕集起来&#xff0c;注入油田地下油层&#xff0c;把原油"驱赶”出来&#…

前端性能优化的一些方法和策略

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…

RocksDB 在 vivo 消息推送系统中的实践

作者&#xff1a;vivo 互联网服务器团队 - Zeng Luobin 本文主要介绍了 RocksDB 的基础原理&#xff0c;并阐述了 RocksDB 在vivo消息推送系统中的一些实践&#xff0c;通过分享一些对 RocksDB 原生能力的探索&#xff0c;希望可以给使用RocksDB的读者带来启发。 一、背景 在…

智能优化算法应用:基于沙猫群算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于沙猫群算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于沙猫群算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.沙猫群算法4.实验参数设定5.算法结果6.参考文献7.…