WMMSE方法的使用笔记

标题很帅

  • 原论文的描述
  • WMMSE的简单应用

无线蜂窝通信系统的预编码设计问题中,经常提到用WMMSE方法设计多用户和速率最大化的预编码,其中最为关键的一步是将原和速率最大化问题转化为均方误差最小化问题,从而将问题由非凸变为关于三个新变量的凸的子问题,交替优化三个子问题即可求解。

对于一般的问题形式,该如何从原和速率最大化问题转化到均方误差最小化问题呢?


原论文的描述

An Iteratively Weighted MMSE Approach to Distributed Sum-Utility Maximization for a MIMO Interfering Broadcast Channel
等待有时间补充

WMMSE的简单应用

原beamforming优化问题

基于上述模型,我们研究了近场多用户通信,考虑当不同用户共享相似方向但距基站距离不同时实现可靠通信的可能性。这里的目的是设计传输波束图案以最大化可实现的总速率,反映每个通道使用可以可靠地传送的总比特数。基于不同的天线架构,对于给定的发射功率约束 P m a x > 0 P_{max} > 0 Pmax>0,感兴趣的任务可以写为:

max ⁡ { w ~ m } ∑ m = 1 M R m ( { w ~ j } j ∈ M ) s.t.  ∑ m = 1 M ∥ w ~ m ∥ 2 ≤ P max ⁡ , { w ~ m } ∈ W , (14) \begin{array}{l} \max _{\left\{\tilde{\mathbf{w}}_{m}\right\}} \sum_{m=1}^{M} R_{m}\left(\left\{\tilde{\mathbf{w}}_{j}\right\}_{j \in \mathcal{M}}\right) \\ \text { s.t. } \sum_{m=1}^{M}\left\|\tilde{\mathbf{w}}_{m}\right\|^{2} \leq P_{\max }, \quad\left\{\tilde{\mathbf{w}}_{m}\right\} \in \mathcal{W}, \end{array} \tag{14} max{w~m}m=1MRm({w~j}jM) s.t. m=1Mw~m2Pmax,{w~m}W,(14)
其中:

R m ( { w ~ j } j ∈ M ) = log ⁡ 2 ( 1 + ∣ a m H w ~ m ∣ 2 ∑ j ≠ m a m H w ~ j ∣ 2 + σ 2 ) R_{m}\left(\left\{\tilde{\mathbf{w}}_{j}\right\}_{j \in \mathcal{M}}\right)=\log _{2}\left(1+\frac{\left|\mathbf{a}_{m}^{H} \tilde{\mathbf{w}}_{m}\right|^{2}}{\left.\sum_{j \neq m} \mathbf{a}_{m}^{H} \tilde{\mathbf{w}}_{j}\right|^{2}+\sigma^{2}}\right) Rm({w~j}jM)=log2 1+j=mamHw~j 2+σ2 amHw~m 2

优化问题求解

对于全数字波束聚焦设计,可行的预编码集 W F D \mathcal{W}_{FD} WFD是无约束的,并且包括 C N \mathbb{C}^N CN M M M个向量的所有组合。对于单用户情况,即 M = 1 M = 1 M=1,通过设置 w ~ 1 = P max ⁡ a 1 ∣ a 1 ∣ \tilde{\mathbf{w}}_{1}= \sqrt{P_{\max }} \frac{\mathbf{a}_{1}}{\left|\mathbf{a}_{1}\right|} w~1=Pmax a1a1来最大化 (14) 中的速率。 。然而,对于 M > 1 M>1 M>1的一般情况,问题(14)是非凸的,因此很难找到最优解。然而,由于(14)与远场操作的干扰广播信道的相应和速率最大化之间的相似性,人们可以利用针对远场系统导出的工具。一种候选策略是使用加权和均方误差(W(S)MMSE)最小化方法[35]来处理问题(14),这保证了收敛到驻点。

通过利用总速率最大化和 MSE 最小化之间的关系 [WMMSE 35,Thm 1],我们有以下引理。

引理 1: W = W F D \mathcal{W} = \mathcal{W}_{FD} W=WFD 的问题 (14) 等价于以下问题(在具有相同全局最优的意义上)

max ⁡ { w ~ m , u m , v m } ∑ m = 1 M log ⁡ 2 ( v m ) − v m e m ( u m , { w ~ m } ) s.t.  ∑ m = 1 M ∥ w ~ m ∥ 2 ≤ P max ⁡ , v m ≥ 0 , m ∈ M , (17) \begin{aligned} \max _{\left\{\tilde{\mathbf{w}}_{m}, u_{m}, v_{m}\right\}} & \sum_{m=1}^{M} \log _{2}\left(v_{m}\right)-v_{m} e_{m}\left(u_{m},\left\{\tilde{\mathbf{w}}_{m}\right\}\right) \\ \text { s.t. } & \sum_{m=1}^{M}\left\|\tilde{\mathbf{w}}_{m}\right\|^{2} \leq P_{\max }, \quad v_{m} \geq 0, m \in \mathcal{M}, \end{aligned} \tag{17} {w~m,um,vm}max s.t. m=1Mlog2(vm)vmem(um,{w~m})m=1Mw~m2Pmax,vm0,mM,(17)

where u m u_{m} um and v m v_{m} vm are auxiliary variables, and e m ( u m , { w ~ m } ) e_{m}\left(u_{m}\right. , \left.\left\{\tilde{\mathbf{w}}_{m}\right\}\right) em(um,{w~m}) is given by e m ( u m , { w ~ m } ) = ∣ 1 − u m a m H w ~ m ∣ 2 + ∑ j ≠ m ∣ u m a m H w ~ j ∣ 2 + σ 2 ∣ u m ∣ 2 e_{m}\left(u_{m},\left\{\tilde{\mathbf{w}}_{m}\right\}\right)=\left|1-u_{m} \mathbf{a}_{m}^{H} \tilde{\mathbf{w}}_{m}\right|^{2}+ \sum_{j \neq m}\left|u_{m} \mathbf{a}_{m}^{H} \tilde{\mathbf{w}}_{j}\right|^{2}+\sigma^{2}\left|u_{m}\right|^{2} em(um,{w~m})= 1umamHw~m 2+j=m umamHw~j 2+σ2um2 .

虽然问题(17)比问题(14)涉及更多的优化变量,但当其余两组固定时,每组优化变量都是凹的。因此,可以应用块坐标下降法来求解(17),得到总结为算法1的过程,该过程基于[35,Sec.3]中提出的方法。
在这里插入图片描述
算法1中,步骤4中的参数λp是与基站发射功率约束相关的拉格朗日乘数。 λp 的选择可以通过超参数优化方案来设置,例如使用二分法[27]、[35]。算法 1 忽略了通信发生在近场的事实,因为该属性仅封装在等效信道向量 {am} 中。尽管如此,正如我们在第四节中以数字方式展示的,这种优化方法以总速率为目标,并没有明确考虑最终的波束图案,它产生聚焦波束,允许多个用户在居住时以最小的交叉干扰共存。相同的角度方向。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/257490.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

手撕HashMap源码1

目录 简单说一下什么是哈希表 哈希冲突的常见解决办法 1.开放寻址法 1.1线性的地址检测 1.2二次检测 1.3双重散列 2.链表法 HashMap的源码讲解 常见属性 初始化对象的几个构造函数 实际的扩容分析 几个常见问题 手写一个简单的哈希表 简单说一下什么是哈希表 其实就是在…

接口测试要测试什么?

第一部分: 首先,在做接口测试的过程中,经常有后端开发会问: 后端接口都测试什么?怎么测的?后端接口测试一遍 ,前端也测试一遍,是不是重复测试了? 于是,为了…

爱智EdgerOS之深入解析AI图像引擎如何实现AI视觉开发

一、前言 AI 视觉是为了让计算机利用摄像机来替代人眼对目标进行识别,跟踪并进一步完成一些更加复杂的图像处理。这一领域的学术研究已经存在了很长时间,但直到 20 世纪 70 年代后期,当计算机的性能提高到足以处理图片这样大规模的数据时&am…

实验3.5 路由器的单臂路由配置

实验3.5 路由器的单臂路由配置 一、任务描述二、任务分析三、具体要求四、实验拓扑五、任务实施1.SWA的基本配置2.RA的基本配置3.在RA上查看接口状态 六、任务验收七、任务小结 一、任务描述 某公司对部门划分了需VLAN之后,发现两个部门之间无法通信,但…

Kubernetes集群安装高可用postgresql

Kubernetes集群安装高可用postgresql Bitnami 提供的 postgresql-ha 解决方案是一个预配置的、高可用的 PostgreSQL 集群配置,通常部署在 Kubernetes 环境中。它使用了一些关键技术和组件来实现数据库的高可用性。,Bitnami postgresql-ha 主要采用以下构…

【PCB设计】嘉立创EDA器件3D模型导入AD的方法

嘉立创EDA器件3D模型导入AD的方法 一、嘉立创EDA导出3D模型二、CAD编辑3D模型三、AD中加载3D模型 一、嘉立创EDA导出3D模型 在嘉立创EDA中找到对应的元器件,并生成PCB,选择导出3D文件 导出元件step模型 二、CAD编辑3D模型 用FreeCAD打开模型 删除…

pytorch的二次索引矩阵无法赋值问题

最近在研究中发现torch一个问题,即torch的二次索引的矩阵无法赋值。 具体来说,给定相同的初始常数矩阵a和iou_target矩阵, 以及另一iou矩阵,直接赋值是没问题的。 然而,当对iou_target矩阵进行二次索引时,即idx矩阵和…

【小白专用】MySQL创建数据库和创建数据表

1.在Windows开始搜索输入Mysql,并选择第一个打开。 2.输入安装时的密码 3.说明安装成功。 二、创建数据库 1. 连接 MySQL 输入 mysql -u root -p 命令,回车,然后输入 MySQL 的密码(不要忘记了密码),再回车,就连接上 MySQL 了。 …

leetcode做题笔记1466. 重新规划路线

n 座城市,从 0 到 n-1 编号,其间共有 n-1 条路线。因此,要想在两座不同城市之间旅行只有唯一一条路线可供选择(路线网形成一颗树)。去年,交通运输部决定重新规划路线,以改变交通拥堵的状况。 路…

全光谱台灯对孩子眼睛好吗?备考护眼台灯推荐

全光谱台灯通常被认为对孩子的眼睛更好,因为它们能够提供更接近自然光的光谱。与传统的白炽灯或荧光灯相比,全光谱台灯能够提供更均匀、真实的光线,减少眼睛的疲劳和视觉疲劳。此外,全光谱台灯还可以提供更好的颜色还原&#xff0…

vue 实现返回顶部功能-指定盒子滚动区域

vue 实现返回顶部功能-指定盒子滚动区域 html代码css代码返回顶部显示/隐藏返回标志 html代码 <a-icontype"vertical-align-top"class"top"name"back-top"click"backTop"v-if"btnFlag"/>css代码 .top {height: 35px;…

PLC无线通讯终端在二氧化碳注气开采石油中的应用

一、应用背景 在传统的石油开采过程中&#xff0c;只能采收到地下原油储层中约30%至40%的石油。二氧化碳强化石油开采技术是一种利用二氧化碳来提高石油采收率的技术。将工业尾气中的二氧化碳被捕集起来&#xff0c;注入油田地下油层&#xff0c;把原油"驱赶”出来&#…