代码随想录算法训练营第45天| 70. 爬楼梯 (进阶) 322. 零钱兑换 279.完全平方数

JAVA代码编写

70. 爬楼梯(进阶版)

卡码网:57. 爬楼梯(第八期模拟笔试)

题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

输入描述

输入共一行,包含两个正整数,分别表示n, m

输出描述

输出一个整数,表示爬到楼顶的方法数。

输入示例
3 2
输出示例
3
提示信息
数据范围:
1 <= m < n <= 32;
当 m = 2,n = 3 时,n = 3 这表示一共有三个台阶,m = 2 代表你每次可以爬一个台阶或者两个台阶。
此时你有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶段
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

教程:https://programmercarl.com/0070.%E7%88%AC%E6%A5%BC%E6%A2%AF%E5%AE%8C%E5%85%A8%E8%83%8C%E5%8C%85%E7%89%88%E6%9C%AC.html#%E6%80%9D%E8%B7%AF

方法一:动态规划

思路:和70. 爬楼梯很像,基础的是每次只能走1个或2个台阶,现在改成能走1-m中任意一个台阶。问有多少种方法走完n阶楼梯。

步骤

  1. 定义dp数组:dp[j]: 爬到第j层楼梯,有dp[j]种方法

  2. 递推公式:dp[j] = dp[j - 1] + dp[j - 2] + … +dp[j - m]

    • dp[j - 1],上j-1层楼梯,有dp[j - 1]种方法,那么再1步跳一个台阶不就是dp[j]了么。
    • dp[j - 2],上j-2层楼梯,有dp[j - 2]种方法,那么再2步跳两个台阶不就是dp[j]了么。
    • dp[j - m],上j-m层楼梯,有dp[j - m]种方法,那么再m步跳两个台阶不就是dp[j]了么。
      可以这样理解。因为每次只能走1个楼梯或2个楼梯…或m个楼梯,那么我们要走j个楼梯,可以从第j-m个楼梯,再走m个楼梯;…;也可以从第j-1个楼梯,再走1个楼梯。所以dp[j] = dp[j - 1] + dp[j - 2] + … +dp[j - m]
  3. dp数组初始化:dp[1]=1,dp[2]=2

  4. 确定遍历顺序:遍历n,再遍历m

  5. 举例推导dp数组n=4,m=2

在这里插入图片描述

简单来说,dp[j]等于前m个dp的和,这里的dp[4]=dp[3]+dp[2],刚好是2个的和。

复杂度分析

  • 时间复杂度:O(n * m)
  • 空间复杂度:O(n)
import java.util.Scanner;class Solution{public static void main(String [] args){Scanner sc = new Scanner(System.in);int m, n;while (sc.hasNextInt()) {// 从键盘输入参数,中间用空格隔开n = sc.nextInt();m = sc.nextInt();// 求排列问题,先遍历背包再遍历物品int[] dp = new int[n + 1];dp[0] = 1;for (int j = 1; j <= n; j++) {for (int i = 1; i <= m; i++) {if (j - i >= 0) dp[j] += dp[j - i];}}System.out.println(dp[n]);}}
}

322. 零钱兑换

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3 
解释:11 = 5 + 5 + 1

示例 2:

输入:coins = [2], amount = 3
输出:-1

示例 3:

输入:coins = [1], amount = 0
输出:0

提示:

  • 1 <= coins.length <= 12
  • 1 <= coins[i] <= 231 - 1
  • 0 <= amount <= 104

教程:https://programmercarl.com/0322.%E9%9B%B6%E9%92%B1%E5%85%91%E6%8D%A2.html

方法一:动态规划

思路:五步曲

步骤

  1. 定义dp [j]:凑成和为amount的最少硬币个数为dp[j]

  2. 递推公式:

    凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])

    所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。

    递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

  3. dp数组初始化:dp[0] =0,考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。

  4. 确定遍历顺序:

    本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数

    所以本题并不强调集合是组合还是排列。

    如果求组合数就是外层for循环遍历物品,内层for遍历背包

    如果求排列数就是外层for遍历背包,内层for循环遍历物品

  5. 举例推导dp数组,

    以输入:coins = [1, 2, 5], amount = 5为例

在这里插入图片描述

复杂度分析

  • 时间复杂度:O(n * amount),n 为coins长度
  • 空间复杂度:O(amount)
class Solution {public int coinChange(int[] coins, int amount) {int max = Integer.MAX_VALUE;int[] dp = new int[amount + 1];//初始化dp数组为最大值for (int j = 0; j < dp.length; j++) {dp[j] = max;}//当金额为0时需要的硬币数目为0dp[0] = 0;for (int i = 0; i < coins.length; i++) {//正序遍历:完全背包每个硬币可以选择多次for (int j = coins[i]; j <= amount; j++) {//只有dp[j-coins[i]]不是初始最大值时,该位才有选择的必要if (dp[j - coins[i]] != max) {//选择硬币数目最小的情况dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);}}}return dp[amount] == max ? -1 : dp[amount];}public static void main(String[] args) {Solution solution = new Solution();solution.coinChange(new int[] {1,2,5},5);}
}

从贪心的角度看,每次放最大的硬币,一直放,直到amount剩下为amount%最大硬币值,接着放次大或能直接整除的硬币。

class Solution {public int coinChange(int[] coins, int amount) {if (amount == 0) return 0;if (coins.length == 1 && amount % coins[0] != 0) return -1;int count = 0;Arrays.sort(coins);for (int i = coins.length - 1; i >= 0; i--) {count += amount / coins[i];amount = amount % coins[i];if (amount == 0) {return count;}}return -1;}
}

但是这个代码不能通过,贪心不能通过局部最优获取全局最优。

279. 完全平方数

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,14916 都是完全平方数,而 311 不是。

示例 1:

输入:n = 12
输出:3 
解释:12 = 4 + 4 + 4

示例 2:

输入:n = 13
输出:2
解释:13 = 4 + 9

提示:

  • 1 <= n <= 104

教程:https://programmercarl.com/0279.%E5%AE%8C%E5%85%A8%E5%B9%B3%E6%96%B9%E6%95%B0.html#_279-%E5%AE%8C%E5%85%A8%E5%B9%B3%E6%96%B9%E6%95%B0

方法一:动态规划

思路:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?

完全背包

步骤

  1. 定义dp [j]:和为j的完全平方数的最少数量为dp[j]

  2. 递推公式:

    dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。

    此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);

  3. dp数组初始化:dp[0] =0,dp[j]赋最大值

  4. 确定遍历顺序:

    两者都可:

    如果求组合数就是外层for循环遍历物品,内层for遍历背包

    如果求排列数就是外层for遍历背包,内层for循环遍历物品

  5. 举例推导dp数组,

    已输入n为5例,dp状态图如下:

279.完全平方数

复杂度分析

  • 时间复杂度:O(n*sqrt(n))
  • 空间复杂度:O(n)
class Solution {// 版本一,先遍历物品, 再遍历背包public int numSquares(int n) {int max = Integer.MAX_VALUE;int[] dp = new int[n + 1];//初始化for (int j = 0; j <= n; j++) {dp[j] = max;}//如果不想要寫for-loop填充數組的話,也可以用JAVA內建的Arrays.fill()函數。//Arrays.fill(dp, Integer.MAX_VALUE);//当和为0时,组合的个数为0dp[0] = 0;// 遍历物品for (int i = 1; i * i <= n; i++) {// 遍历背包for (int j = i * i; j <= n; j++) {//if (dp[j - i * i] != max) {dp[j] = Math.min(dp[j], dp[j - i * i] + 1);//}//不需要這個if statement,因爲在完全平方數這一題不會有"湊不成"的狀況發生( 一定可以用"1"來組成任何一個n),故comment掉這個if statement。}}return dp[n];}
}class Solution {// 版本二, 先遍历背包, 再遍历物品public int numSquares(int n) {int max = Integer.MAX_VALUE;int[] dp = new int[n + 1];// 初始化for (int j = 0; j <= n; j++) {dp[j] = max;}// 当和为0时,组合的个数为0dp[0] = 0;// 遍历背包for (int j = 1; j <= n; j++) {// 遍历物品for (int i = 1; i * i <= j; i++) {dp[j] = Math.min(dp[j], dp[j - i * i] + 1);}}return dp[n];}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/258045.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DSGN:用于 3D 目标检测的深度立体几何网络

论文地址&#xff1a;https://www.jianshu.com/go-wild?ac2&urlhttps%3A%2F%2Farxiv.org%2Fpdf%2F2001.03398v3.pdf 论文代码&#xff1a;https://github.com/chenyilun95/DSGN 论文背景 大多数最先进的 3D 物体检测器严重依赖 LiDAR 传感器&#xff0c;因为基于图像的方…

【Docker二】docker网络模式、网络通信、数据管理、资源控制

目录 一、docker网络模式&#xff1a; 1、概述 2、docker网络实现原理&#xff1a; 3、docker的网络模式&#xff1a; 3.1、bridge模式&#xff1a; 3.2、host模式&#xff1a; 3.3、container模式&#xff1a; 3.4、none模式&#xff1a; 3.5、自定义网络模式&#xf…

NSS [NSSCTF 2022 Spring Recruit]babyphp

NSS [NSSCTF 2022 Spring Recruit]babyphp 考点&#xff1a;PHP特性 开局源码直接裸奔 <?php highlight_file(__FILE__); include_once(flag.php);if(isset($_POST[a])&&!preg_match(/[0-9]/,$_POST[a])&&intval($_POST[a])){if(isset($_POST[b1])&&…

Java se之类和对象

目录 类的定义格式如何去自定义this的引用如何初始化对象构造方法的定义和使用 类的定义格式 class ClassName{ //属性(成员变量) //行为(成员方法) } 1>变量与方法 1.成员变量:普通成员变量 静态成员变量 2.成员方法:普通成员方法 静态成员方法 其中的静态变量与方法,在后…

echarts折线图的数据显示

一、 echarts让折线图的每个折点都显示y轴的数值 效果如下 // 在 series中添加 itemStyle : { normal: {label : {show: true}}}series: [{name: 买入汇率,data: BuyRate,type: line,itemStyle : { normal: {label : {show: true}}}},{name: 卖出汇率,data: SaleRate,type: lin…

基于个人微信进行二次开发

请求URL&#xff1a; http://域名地址/sendVoice 请求方式&#xff1a; POST 请求头Headers&#xff1a; Content-Type&#xff1a;application/jsonAuthorization&#xff1a;login接口返回 参数&#xff1a; 参数名必选类型说明wId是string登录实例标识wcId是string接…

机器学习实战:预测波士顿房价

前言&#xff1a; Hello大家好&#xff0c;我是Dream。 今天来学习一下机器学习中一个非常经典的案例&#xff1a;预测波士顿房价&#xff0c;在此过程中也会补充很多重要的知识点&#xff0c;欢迎大家一起前来探讨学习~ 一、导入数据 在这个项目中&#xff0c;我们利用马萨诸…

Numpy数组的数据类型汇总 (第4讲)

Numpy数组的数据类型 (第4讲)         🍹博主 侯小啾 感谢您的支持与信赖。☀️ 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ�…

如何使用玻璃材质制作3D钻石模型

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 当谈到游戏角色的3D模型风格时&#xff0c;有几种不同的风格&#xf…

JAVA定时任务技术总结

在日常的项目开发中&#xff0c;多多少少都会涉及到一些定时任务的需求。例如每分钟扫描超时支付的订单&#xff0c;每小时清理一次数据库历史数据&#xff0c;每天统计前一天的数据并生成报表&#xff0c;定时去扫描某个表的异常信息&#xff08;最终一致性的方案也可能涉及&a…

使用 KubeRay 和 Kueue 在 Kubernetes 中托管 Ray 工作负载

在 KubeCon CN 2023 的「 Open AI 数据 | Open AI Data」专题中&#xff0c;火山引擎软件工程师胡元哲分享了《使用 KubeRay 和 Kueue 在 Kubernetes 中托管 Ray 工作负载&#xff5c;Sailing Ray workloads with KubeRay and Kueue in Kubernetes议题。以下是本次演讲的文字…

信息化,数字化,智能化三者是同一概念么?

引言 在当今科技和商业领域&#xff0c;信息化、数字化和智能化是三个极为关键的概念。信息化强调信息的获取、传递和应用&#xff0c;数字化则是将物理实体转化为数字形式&#xff0c;而智能化则赋予系统更高级的智能和自主性。这些概念的交汇与融合塑造着我们的现实&#xf…