Python文件操作(txt + xls + json)

文章目录

  • 简介
  • 1、使用with_open读取和保存:.txt + .bin(二进制文本)
    • 1.1、with open语句详解
    • 1.1、项目实战
  • 2、使用pandas读取和保存:.xls + .xlsx
    • 2.1、pandas简介
    • 2.2、环境配置
    • 2.3、项目实战
  • 3、 使用json.dump读取和保存:.json
    • 3.1、json格式
    • 3.2、项目实战
  • 4、打开对话框
    • (1)打开文件选择对话框
    • (2)打开文件夹选择对话框
    • (3)判断路径 / 文件夹 / 文件是否存在
  • 5、统计时间
    • 5.1、计算运行时间
    • 5.2、获取当前时间

简介

Python文件操作是处理文件和目录的重要组成部分。文件操作允许您创建、打开、读取、写入、修改和删除文件。这是Python编程中常见的任务之一,对于处理数据、配置文件、日志记录等等非常有用。

使用Python的内置库和第三方库进行文件操作:
(1)TXT文件
(2)Excel文件
(3)JSON文件

1、使用with_open读取和保存:.txt + .bin(二进制文本)

1.1、with open语句详解

函数功能:with open语句是Python中一种处理文件的方式。通过使用with语句,可以确保在退出代码块时文件会被正确关闭,避免资源泄漏。
函数说明:with open(file_path, mode) as file:
输入参数:(1)file_path:要打开的文件路径。(2)mode:文件模式,指定文件在打开时的操作。可以是以下之一:"r":	读取模式。用于打开文件并读取内容。"w":	写入模式。用于打开文件并写入内容。备注:如果文件已存在,会清空文件内容。如果文件不存在,则创建一个新文件。"a":	追加模式。用于打开文件并在文件末尾追加内容。备注:如果文件不存在,则创建一个新文件。"rb":	以二进制读取模式打开文件。"wb":	以二进制写入模式打开文件。"ab":	以二进制追加模式打开文件。

1.1、项目实战

with open('file.txt', 'r') as file:content = file.read()  # 读取文本文件
# 文件在这里会自动关闭with open('file.txt', 'w') as file:file.write('Hello, World!')  # 写入文本文件
# 文件在这里会自动关闭
with open('binary_file.bin', 'rb') as file:binary_data = file.read()  # 读取二进制文件
# 文件在这里会自动关闭with open('binary_file.bin', 'wb') as file:file.write(b'\x01\x02\x03')  # 写入二进制文件
# 文件在这里会自动关闭

2、使用pandas读取和保存:.xls + .xlsx

2.1、pandas简介

pandas(Python Data Analysis Library)是一个强大的开源数据分析和处理库,它为Python编程语言提供了高性能、易于使用的数据结构和数据分析工具。pandas通常与NumPy和Matplotlib等库一起使用,用于数据清洗、转换、分析和可视化。

  • 数据结构:(1)Series:是一个带标签的一维数组,可以容纳任何数据类型。它由一组数据和与之相关的标签(索引)组成。(2)DataFrame:是一个二维的表格型数据结构,可以容纳多种类型的数据。它类似于电子表格或 SQL 表,具有行和列。
  • 数据导入和导出:Pandas 可以轻松导入和导出多种数据格式,包括 CSV、Excel、SQL 数据库、JSON、HTML、Parquet、HDF5 等。示例:pd.read_csv(), pd.read_excel(), df.to_csv(), df.to_excel(), 等等。
  • 数据清洗和处理:Pandas 允许你删除重复值、处理缺失值、过滤数据、合并和连接数据、排序和分组数据。示例:df.drop_duplicates(), df.dropna(), df.fillna(), df.groupby(), df.pivot_table(), 等等。
  • 数据索引和选择:可以使用标签或位置来选择特定的数据行或列。Pandas 提供了多种索引和切片的方式。示例:df['列名'], df.loc[], df.iloc[], df.loc[], 等等。
  • 数据计算和聚合:Pandas 提供了丰富的数据计算和聚合功能,包括求和、平均值、计数、最大值、最小值、分位数等等。示例:df.mean(), df.sum(), df.max(), df.min(), df.describe(), 等等。
  • 数据可视化:Pandas 可以与其他 Python 可视化库(如 Matplotlib 和 Seaborn)结合使用,用于绘制数据图表。示例:df.plot(), df.hist(), df.boxplot(), sns.pairplot(), 等等。
  • 时间序列分析:Pandas 对时间序列数据有很好的支持,可以轻松处理日期和时间数据。示例:pd.to_datetime(), df.resample(), df.rolling(), 等等。
  • 高性能:Pandas 针对大数据集的处理进行了优化,可以高效地处理大规模数据。

2.2、环境配置

  • pip install pandas
  • pip install xlrd
  • pip install openpyxl

(1)pandas的read_excel()函数依赖于 xlrd 库来实现读取.xls格式的Excel文件,因此需要安装并导入xlrd库。
(2)pandas的to_excel()函数依赖于 openpyxl 库来实现将DataFrame对象保存.xlsx格式的Excel文件,因此需要安装并导入openpyxl库。

  • xlrd 是一个用于读取 Excel 文件的库,它提供了许多功能来处理 Excel 文件,包括读取单元格内容、处理日期、数字和文本等。使用 xlrd.open_workbook() 函数可以打开 Excel 文件,并使用工作簿、工作表对象来访问数据。
  • openpyxl 是一个用于读取和写入 Excel 文件的库,它提供了更多的灵活性和功能,包括读取和修改单元格内容、样式和图表等。使用 openpyxl.load_workbook() 函数可以打开 Excel 文件,并使用工作簿、工作表对象来访问数据。

2.3、项目实战

import os
import pandas as pd"""读取xls数据"""
excel_file_path = os.getcwd() + r'\rgb.xls'
# 使用 header 参数指定要跳过的行数,通常跳过第一行(表头),默认 header=0
df = pd.read_excel(excel_file_path, header=None)
# 提取第一列和第二列数据并转换为列表
gray_value = df.iloc[:, 0].tolist()  # 提取第一列数据并转换为列表
name_value = df.iloc[:, 1].tolist()  # 提取第二列数据并转换为列表
rgb_value = df.iloc[:, 2:5].values.tolist()  # 提取第三到四列数据并转换为列表(RGB)"""数据保存到xls"""
data = [["nii", num, 1]]  # 创建一个包含单行数据的二维数组
df = pd.DataFrame(data, columns=["name", "num", "RGB"])
df.to_excel(self.output_excel_path, index=False, engine='openpyxl')
print(f'Data saved to {self.output_excel_path}')"""
# 保存三维数组import pandas as pd
data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]  			# 示例数组
df = pd.DataFrame(data, columns=["z", "y", "x"])
output_excel_path = "output.xlsx"  					# 替换为您想要保存的文件路径
df.to_excel(output_excel_path, index=False, engine='openpyxl')
print(f'Data saved to {output_excel_path}')
"""
"""在当前的excel数据中添加新数据"""
import pandas as pd
import os
# 检查Excel文件是否已存在
excel_path = folder_path + "/cell_counting/all.xlsx"
if os.path.exists(excel_path):df = pd.read_excel(excel_path)   # 如果文件存在,读取现有数据
else:df = pd.DataFrame()  # 如果文件不存在,创建一个空的数据框
new_data = {'target_gray': [target_gray], 'cell_num': [cell_num]}
new_df = pd.DataFrame(new_data)  # 添加新的数据到数据框
df = pd.concat([df, new_df], ignore_index=True)
df.to_excel(excel_path, index=False, engine='openpyxl')  # 将更新后的数据框写回Excel文件
print(f'Data has been successfully saved to: {excel_path}')

3、 使用json.dump读取和保存:.json

3.1、json格式

JSON(JavaScript Object Notation)是一种轻量级的用于数据存储和交换的文本格式。最初由Douglas Crockford于2001年提出,它基于JavaScript的一个子集,但已经成为一种独立于编程语言的数据格式。

JSON的主要特点:

  • 可读性:采用类似于字典或映射的 " 键-值对 " 方式来表示数据。
  • 支持多种数据结构:包括字符串、数字、布尔值、数组、对象(也叫字典或映射)和null。这些数据类型可以嵌套组合,以表示复杂的数据结构。
  • 支持跨平台交互JSON是一种独立于编程语言的数据格式,可以在不同的编程语言中进行解析和生成。这使得它成为不同系统和应用程序之间进行数据交换的理想选择。
  • 轻量级:JSON的语法非常简洁,没有繁杂的标记或语法,这使得它在网络传输中占用的带宽较少。
  • 易于解析:JSON数据可以通过各种编程语言中的解析器快速解析为内部数据结构,使得应用程序能够轻松地操作JSON数据。
  • 支持添加注释:虽然JSON规范中并没有官方支持注释的语法,但一些JSON解析器允许在数据中包含注释,这对于文档和配置文件非常有用。
# 字符串、数字、布尔值、数组、对象
data = {"name": "John Doe",							"age": 30,"isStudent": False,"courses": ["Math", "Science", "History"],"address": {"street": "123 Main St","city": "Anytown","zipCode": "12345"}
}

3.2、项目实战

  • 方法一:使用with语句的好处是,它会在代码块执行完毕后自动关闭文件。这确保了文件在使用完后被正确关闭,不会造成资源泄漏。在with语句块结束时,文件会自动被关闭,而不需要显式调用close()方法。
import jsonjson_file_path = "/coordinates.json"
with open(json_file_path, 'w') as json_file:  # 打开json文件# 在这个代码块中,json_file处于打开状态data = {'Z_line': Z_line,'Y_line': Y_line,'X_line': X_line}json.dump(data, json_file, indent=4)  # 填充json文件# 在这个代码块中,json_file会自动被关闭
  • 方法二:如果使用open()方法来打开文件,需要在文件使用完后显式调用close()方法来关闭文件。如果忘记关闭文件,可能会导致文件句柄泄漏,占用系统资源。
import jsonjson_file_path = "/coordinates.json"
f = open(json_file_path, 'w')  # 打开json文件
data = {'Z_line': Z_line,'Y_line': Y_line,'X_line': X_line}
json.dump(data, f, indent=4)  # 填充json文件f.close()  # 手动关闭文件,确保释放资源。

4、打开对话框

Python本身没有内置的文件夹选择界面。然而,可以使用第三方库来实现在代码中选择文件或文件夹的功能。一个常用的库是tkinter,它是Python的标准GUI库之一,提供了创建简单的图形用户界面的功能。

  • 安装:tkinter是Python的标准库之一,通常已经预装在大多数Python发行版中。如果你的环境中没有安装tkinter,你可能需要安装它。在大多数操作系统上,可以通过命令行运行以下命令来安装tkinter:pip install tkinter
  • 备注:选择文件与文件夹的区别,一个是调用filedialog.askopenfilename(),一个是调用filedialog.askdirectory()

(1)打开文件选择对话框

在这里插入图片描述

import tkinter as tk
from tkinter import filedialog
import osroot = tk.Tk()		# 创建根窗口
root.withdraw()  	# 隐藏根窗口
file_path = filedialog.askopenfilename()		# 打开文件选择对话框
print("Selected file path:", file_path)			# 打印所选文件的路径file_name = os.path.basename(file_path)                         # 获取文件的名称+后缀
file_name_without_extension = os.path.splitext(file_name)[0]    # 获取文件的名称
file_directory = os.path.dirname(file_path)                     # 获取文件的目录print("获取文件的名称+后缀:", file_name)
print("获取文件的名称:", file_name_without_extension)
print("获取文件的目录:", file_directory)"""
Selected file path: D:/Anaconda/_conda.exe
获取文件的名称+后缀:_conda.exe
获取文件的名称:_conda
获取文件的目录:D:/Anaconda
"""

(2)打开文件夹选择对话框

在这里插入图片描述

import tkinter as tk
from tkinter import filedialogroot = tk.Tk()		# 创建根窗口
root.withdraw()  	# 隐藏根窗口
folder_path = filedialog.askdirectory()			# 打开文件夹选择对话框
print("Selected folder path:", folder_path)		# 打印所选文件夹的路径###########################################################################
import tifffile		# 用于打开.tif格式的图像
# 读取文件夹中的所有tif图像并将它们存储在列表中
image_list = []		# 新建一个空列表
for filename in sorted(os.listdir(folder_path)):				# 列举文件夹中的所有文件 + 排序后遍历。if filename.endswith('.tif'):								# 提取以.tif结尾的图像文件。image_path = os.path.join(folder_path, filename)		# 将文件名和文件夹路径连接起来,得到完整的图像文件路径image_pathimage = tifffile.imread(image_path)						# 加载tif图像image_list.append(image)								# 在列表末尾添加元素import numpy as np
output_tif_path = "result.tif"
image_stack = np.stack(image_list, axis=0)				# 将图像列表转换为三维数组
labeled_image = image_stack.astype(np.uint8)            # 将数据类型转换为uint8
tifffile.imwrite(output_tif_path, labeled_image)        # 保存图像为TIFF并指定数据类型为uint8

(3)判断路径 / 文件夹 / 文件是否存在

import osfolder_path = os.getcwd() + "/image"
# (1)判断字符串是否存在
if folder_path != "":# (2)判断文件夹是否存在(不存在则新建)if not os.path.exists(folder_path):os.makedirs(folder_path)print("文件夹不存在")# (3)判断文件是否存在image_path = folder_path + "/conda.exe"if os.path.exists(image_path):print("图像存在")

5、统计时间

5.1、计算运行时间

import time
start_time = time.time()  # 记录开始时间
# ...
end_time = time.time()  # 记录结束时间
runtime = end_time - start_time  # 计算运行时间
print(f"总运行时间: {runtime:.2f} 秒")"""
import time
start_time = time.time()  # 记录开始时间print(f"总运行时间: {time.time() - start_time:.2f} 秒")  # 打印运行时间
"""

5.2、获取当前时间

import time
current_timestamp = time.time()
print("获取当前时间戳:", current_timestamp)
"""
#####################################################################
时间戳: 表示从某个特定时间点(通常是"Unix纪元",即1970年1月1日00:00:00 UTC)到特定日期时间的秒数,包括小数部分表示毫秒或微秒。
#####################################################################
获取当前时间戳: 1698040970.5602446 表示距离1970年1月1日00:00:00 UTC已经过去了大约 1698040970 秒和约 560 毫秒以及 2446 微秒。
"""from datetime import datetime
print("获取当前日期和时间:", datetime.now())
print("只日期格式:", datetime.now().date())
print("只时间格式:", datetime.now().time())
print("自定义格式:", datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
"""
获取当前日期和时间: 2023-10-23 14:02:50.560244 表示2023年10月23日下午14点2分50秒零点五百六十四微秒
#####################################################################
只日期格式: 2023-10-23
只时间格式: 14:02:50.560244
自定义格式: 2023-10-23 14:02:50
"""

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/258379.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot项目访问resources下的静态资源

1.新建一个配置文件夹,放配置类 2.编辑 WebMvcConfig.java package com.southwind.configuration;import org.springframework.context.annotation.Configuration; import org.springframework.web.servlet.config.annotation.ResourceHandlerRegistry; import or…

结合ColorUI组件开发微信小程序

1.自定义组件生命周期函数: Component({data: {},attached() {console.log("自定义组件生命周期函数 attached--先执行");this.getPos();},ready() {console.log("ready生命周期函数---在attached之后执行")},methods: {getPos() {var that th…

应用架构——集群、分布式、微服务的概念及异同

一、什么是集群? 集群是指将多台服务器集中在一起, 每台服务器都实现相同的业务,做相同的事;但是每台服务器并不是缺 一不可,存在的主要作用是缓解并发能力和单点故障转移问题。 集群主要具有以下特征: …

数据结构与算法(二)分治算法(Java)

目录 一、简介1.1 背景1.2 定义1.3 步骤1.4 时间复杂度 二、经典示例2.1 二分搜索2.2 快速排序2.3 归并排序(逆序数)2.4 最大子序列和 一、简介 1.1 背景 在学习分治算法之前,我们先来举一个例子。 假如你有一个存钱罐,过年家人…

【mysql】事物与隔离级别

事物 事务(Transaction)是并发控制的基本单位。所谓的事务呢,它是一个操作序列,这些操作要么都执行,要么都不执行,它是一个不可分割的工作单位。 事务具有四大特性,通常称为ACID特性: 原子性&#xff08…

microblaze仿真

verdivcs (1) vlogan/vcs增加编译选项 -debug_accessall -kdb -lca (2) 在 simulation 选项中加入下面三个选项 -guiverdi UVM_VERDI_TRACE"UVM_AWARERALHIERCOMPWAVE" UVM_TR_RECORD 这里 -guiverdi是启动verdi 和vcs联合仿真。UVM_VERDI_TRACE 这里是记录 U…

mybatis数据输出-insert操作时获取自增列的值给对应的属性赋值

jdbc-修改 水果库存系统的 BaseDao 的 executeUpdate 方法支持返回自增列-CSDN博客 1、建库建表 CREATE DATABASE mybatis-example;USE mybatis-example;CREATE TABLE t_emp(emp_id INT AUTO_INCREMENT,emp_name CHAR(100),emp_salary DOUBLE(10,5),PRIMARY KEY(emp_id) );INSE…

【Linux系统化学习】命令行参数 | 环境变量的再次理解

个人主页点击直达:小白不是程序媛 Linux专栏:Linux系统化学习 代码仓库:Gitee 目录 mian函数传参获取环境变量 手动添加环境变量 导出环境变量 environ获取环境变量 本地变量和环境变量的区别 Linux的命令分类 常规命令 内建命令 …

2024黑龙江省职业院校技能大赛信息安全管理与评估样题第二三阶段

2024黑龙江省职业院校技能大赛暨国赛选拔赛 "信息安全管理与评估"样题 *第二阶段竞赛项目试题* 本文件为信息安全管理与评估项目竞赛-第二阶段试题,第二阶段内容包括:网络安全事件响应、数字取证调查和应用程序安全。 极安云科专注技能竞赛…

我的创作纪念日——多线程进阶分享

多线程-进阶 1. 锁的策略 1.1 乐观锁&悲观锁 乐观锁 预计在线程中数据大概率不会被其他线程拿去修改 对于加锁所作的准备较少。只有当修改的操作真正发生了,才会进行加锁操作 所以乐观锁适用于多读少写的情况,可以降低加锁频率,提升效…

28. Python Web 编程:Django 基础教程

目录 安装使用创建项目启动服务器创建数据库创建应用创建模型设计路由设计视图设计模版 安装使用 Django 项目主页:https://www.djangoproject.com 访问官网 https://www.djangoproject.com/download/ 或者 https://github.com/django/django Windows 按住winR 输…

Markdown从入门到精通

Markdown从入门到精通 文章目录 Markdown从入门到精通前言一、Markdown是什么二、Markdown优点三、Markdown的基本语法3.1 标题3.2 字体3.3 换行3.4 引用3.5 链接3.6 图片3.7 列表3.8 分割线3.9 删除线3.10 下划线3.11 代码块3.12 表格3.13 脚注3.14 特殊符号 四、Markdown的高…