在Pytorch中使用Tensorboard可视化训练过程

这篇是我对哔哩哔哩up主 @霹雳吧啦Wz 的视频的文字版学习笔记 感谢他对知识的分享

本节课我们来讲一下如何在pytouch当中去使用我们的tensorboard

对我们的训练过程进行一个可视化

左边有一个visualizing models data and training with tensorboard

主要是这么一个教程

那么这里我想问一下大家

平时你们在使用tensorboard的时候

主要会去使用它的哪些功能

反正在我个人使用当中呢

我主要会使用其中的四个功能

第一个就是去保存一下网络的一个结构图

比如说在我们tensorboard的graphs当中

会有我们模型的一个结构图

然后这个图当中呢其实就能够比较清晰地看到我们整个模型

它的搭建的每一个模块

第二个呢就是保存我们在训练过程当中

训练集它的一个损失loss 还有验证集的accuracy 还有我们的学习率变化等等

在我们的scalars当中

那么这里呢就比如说我们这里有tracy

还有我们的learning rate

还有我们的train loss

那么第三个就是保存权重数值

它的一个分布在tensorboard当中的histogram当中

在这个里面呢一般就是保存我们每一个层结构

它的一个权重的数值的一个分布

那么最后一个呢就是保存我们预测图片的一些信息

就比如说在我们的image当中保存有我们训练的每一个step对于我们给定的一些图片

它的一个预测的一个结果

首先我们这里需要建一个文件夹

叫做plot image

那么在这个文件夹当中呢

我们所保存的图片是我们待会儿在训练过程当中

会对我们的这些图片进行预测

由于本节课训练是以我们之前的花分类数据集为例

所以呢我们这里需要先提前准备好我们的花分类数据集

我这里有给下载花分类数据集的一个地址

下载完之后呢

我们这里的image root就指向我们解压之后文件夹它的一个路径

那么准备好我们的数据集之后呢

接下来就是关于预训练权重了

那么这里也是根据你个人的需求来进行选择了

如果你是需要去使用它的预训练权重的话

你就在这个pytorch官方的这个地址上去下载这个权重文件

然后将这里的defaul指向你刚刚下载这个权重路径就可以了

那如果你不去指认的话

那么它默认的就是不去使用任何预训练权重了

那么本教程其实是没有去使用这个预训练权重的

因为如果你使用了预训练权重之后呢

你会发现它的accuracy loss基本上是没有变化的

因为在你训练的第一个epoch

它的准确率就已经达到97%了

所以基本看不出有什么变化

这里我不去使用预训练权重

就可以看到它的loss变化以及accuracy变化

那么这个参数freeze layers

就是说是否去冻结我们的除全连接层以外的所有网络结构啊

这里默认是false

就是不去冻结

如果你设置为true的话

它就会去单独训练最后这个全连接层

之前的权重是不会去训练的

那么如果你使用这个预训练权重的话

你可以将这里设置为true

可以加快模型的训练

首先我们这里的summary writer

它是来自于touch utils的tensorboard的模块当中导入进来的

所以我们这里先实例化我们的tensorboard对象

这里我们需要插入这个参数呢

就是说我们将我们的tensorboard的文件保存在哪里

我这里就是保存在当前项目目录下的runs

然后flower experiment这个文件夹当中

那么当我们实例化之后呢

它就会在我们当前项目想创建一个runs这个文件

然后会将我们对应的tbd文件保存在flower experiment当中

实例化我们的tensorboard对象之后呢

这里有去添加我们网络的一个结构图

在我们实例化我们的模型之后呢

紧接着在这里我创建了一个initial image

它就是一个零矩阵了

这里为什么要去创建一个initial image呢

因为在我们添加这个graph的时候

我们是需要将我们这个initial image传入到我们的模型当中

让它进行一个这样传播

然后会根据我们输入的数据

在模型中正向传播的一个流程来创建我们的网络结构图

所以我们这里传入的数据只要和我们的图片大小相同就可以了

所以呢我这里就有创建一个initial image

那么我们通过我们实例化的tensorboard

它的add graph这个函数项目的模型

以及我们初始的一个图片传入进去就ok了

在我们的这个位置有使用到add scaler

那么这里呢其实就是在我们训练的每个epoch之后

也就是在我们验证完我们的模型之后

我们会去保存一下我们当前这一轮训练的训练集的平均损失loss

还有我们验证集的accuracy

以及我们的learning rate

我们传入有这五个变量

第一个那就是我们实例化的模型

第二个image

第二对应的就是我们刚刚这个plot image它的一个根目录

第三个transform对应着我们验证集所使用的一个图像预处理

第四个参数对应就是我们总共要展示多少张图片

第五参数就是我们说使用的device信息

然后接下来我们再往下走就到了我们这里的add figure

也就是添加我们预测plot image文件夹下这几张图片

第一个是我们这张图片它的一个名称

它的一个标题

然后第二个参数对应的就是figure这个对象

第三个global step朋友们是通过epoch来指定的

首先在我们训练过程当中呢

我们会去生成一个json文件

这个json文件保存的就是我们类别索引

以及它的一个名称的一个对应关系

那么这里呢只要是正常训练的话

就会生成它

那如果它不存在的话

就说明训练过程是有问题的

那么这里就会报出一个错误

就是没有找到这个文件

然后接下来我们就会读取这个文件

我们通过touch stack方法将我们的images

也就是我们刚刚所保存的一个图片的列表进行一个拼接

拼接成一个batch

那么这里大家需要注意的是

我们的stack方法会对我们的数据增加一个新的维度

那么通过我们刚才预处理之后

其实我们的每一个图片就变成了一个tensor的格式

它的shape就是3x224x224

那么这里呢我们会在它的最前面新增一个维度

那么就变成了拼接之后呢

它就变成了batch x 3x224x224

我已经将我之前训练好的结果保存在对应的文件夹下面了

那么接下来我们就来打开tenor board来看一下

那么首先进入我们的项目根目录

然后呢进入我们的runs文件

然后打开终端

打开终端之后呢

然后就输入tensorboard

然后logdir

然后就输入当前路径就可以了

然后接下来大家需要注意的是

我们还需要再加上一个参数啊

就是这个samples per plugin

然后在这个参数当中

我们需要指定一下我们所展示图片的一个数目

如果我们不指定这个参数的话

它默认会去采样十张图片

因为在我这个训练过程当中呢

如果按照默认参数来的话

只能看到十张

所以我这里会加上这么一个参数

指定为50之后呢

它就会展示所有的图片了

那么回车之后呢

终端就提示我们在local host 端口可以看到

那么我们就进入浏览器

输入local host 6006回车

然后就可以看到我们训练过程当中保存了一系列的数据了

那么在这个blog当中

我们可以看到我们那个数据的流向

就是根据这个箭头可以判断出数据的流向

我们的初始化方法中只定义了一个relu

也就是说我们在我们主干分支当中所使用的这个relu结构

与我们主干分支与捷径分支相加之后所经过的机函的relu是同一个

所以这里会有一个往回流的一个箭头

然后经过relu之后呢

它就会输入到下一个模块当中

如果你想为了这个图看起来更好看的话

其实你可以在定义block的时候

定义两个relu

主分支上使用主分支这个relu

然后相加之后再使用另外一个relu

这样的话就不会出现像我们这个箭头往回指的这个情况

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/258729.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java多线程并发(二)

四种线程池 Java 里面线程池的顶级接口是 Executor,但是严格意义上讲 Executor 并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是 ExecutorService。 newCachedThreadPool 创建一个可根据需要创建新线程的线程池,但是在以前…

麒麟系统进入救援模式或者是crtl D界面排查方法

如出现以下图片的情况可能需要修复磁盘: V10GFB-desktop: 开机后发现一致卡在此界面: 按esc键后有以下报错信息说明在/etc/fstab里面编写的外挂磁盘的命令有问题 解决方法如下:进入单用户模式对/etc/fstab进行修改: …

Opencv制作电子签名(涉及知识点:像素过滤,图片通用resize函数,像素大于某个阈值则赋值为其它的像素值)

import cv2def resize_by_ratio(image, widthNone, heightNone, intercv2.INTER_AREA):img_new_size None(h, w) image.shape[:2] # 获得高度和宽度if width is None and height is None: # 如果输入的宽度和高度都为空return image # 直接返回原图if width is None:h_ratio …

gitee配置

注册配置gitee Gitee官网 进入官网之后,有账号直接登录,没有账号注册一个新的账号 下载安装git客户端 官网地址 下载完成,一路直接点击安装直接安装成功 检查是否安装成功 鼠标留在桌面–>右击–>出现Git GUI Here/Git Bash Her…

理解VAE(变分自编码器)

1.贝叶斯公式 贝叶斯理论的思路是,在主观判断的基础上,先估计一个值(先验概率),然后根据观察的新信息不断修正(可能性函数)。 P(A):没有数据B的支持下,A发生的概率,也叫做先验概率。…

Linux基础命令练习2

案例2:创建命令练习 请在/root创建三个目录分别为student、file、stu18 请在/opt创建三个文本文件分别为1.txt、a.txt、stu.txt 案例3:复制、删除、移动 在目录/opt下创建一个子目录 etime 在目录/opt/etime/创建文件readme.txt,利用vim写入内容 …

【Java 基础】26 枚举

文章目录 1. 什么是枚举2. 定义3. 使用1)常量2)遍历3)switch 4. 属性和方法1)属性2)方法 5. 实现原理6. 使用场景总结 1. 什么是枚举 枚举是列出某些有穷序列集的所有成员的程序,或者是一种特定类型对象的计…

Java Spring + SpringMVC + MyBatis(SSM)期末作业项目

本系统是一个图书管理系统,比较适合当作期末作业主要技术栈如下: - 数据库:MySQL - 开发工具:IDEA - 数据连接池:Druid - Web容器:Apache Tomcat - 项目管理工具:Maven - 版本控制工具&#xf…

编译和使用WPS-ghrsst-to-intermediate生成SST

一、下载 V1.0 https://github.com/bbrashers/WPS-ghrsst-to-intermediate/tree/masterV1.5(使用过程报错,原因不详,能正常使用的麻烦告知一下方法) https://github.com/dmitryale/WPS-ghrsst-to-intermediate二、修改makefile…

大名鼎鼎的CleanMyMac X软件值不值得下载?

今天给大家推荐大名鼎鼎的Clean My Mac X(以下简称CMM X),它是Mac上一款美观易用的系统优化清理工具,也是小编刚开始用Mac时的装机必备。它能够清理系统垃圾,提升电脑的运行速度,卸载许久不用的软件&#x…

Oracle的错误信息帮助:Error Help

今天看手册时,发现上面有个提示: Error messages are now available in Error Help. 点击 View Error Help,显示如下,其实就是oerr命令的图形化版本: 点击Database Error Message Index,以下界面等同于命令…

甘草书店:#10 2023年11月24日 星期五 「麦田创业分享2—世界奇奇怪怪,请保持可可爱爱」

今日继续分享麦田创业经验。 如果你问我,创业过程中是否想过放弃。那么答案是,有那么一次。 那时想要放弃的原因并不是辛苦没有回报,或是资金短缺,而是没能理解“异见者”。 其实事情非常简单,现在反观那时的自己&a…