《深入理解计算机系统》学习笔记 - 第四课 - 机器级别的程序

Lecture 05 Machine Level Programming I Basics 机器级别的程序

文章目录

  • Lecture 05 Machine Level Programming I Basics 机器级别的程序
    • intel 处理器的历史和体系结构
      • 芯片的构成
      • AMD 公司(Advanced Micro Devices,先进的微型设备)
    • C, 汇编, 机器代码
      • 定义
      • 汇编/机器代码
      • C程序转换为目标代码
      • 编译为汇编代码
      • 汇编的特性:数据类型
      • 汇编的特性:操作
      • 机器指令解析示例
      • 反汇编代码
        • 反汇编器 objdump
        • 反汇编 gdb
    • 汇编基础:寄存器,操作数,移动
      • 寄存器
      • 移动数据 mov
      • 简单的内存地址模式
        • 地址模式示例
      • 实际中交换方法
    • 完整的内存地址模式
    • 地址计算指令 `lea`
      • 示例
    • 算术运算 和 逻辑运算
      • 示例
    • 《深入理解计算机系统》书籍学习笔记

intel 处理器的历史和体系结构

  • 复杂指令集电脑(complex instruction set computer)
  • 精简指令集电脑 Reduced Instruction Set Computers(RISC)

芯片的构成

broadwell 型号模型:
在这里插入图片描述

  • 一个芯片有多个内核。
  • 芯片的边缘有许多接口连接其余的设备。
  • DDR是连接到主存储器的方式,即所谓的DRAM 动态 RAM。
  • PCI 是与外围设备的连接。
  • SATA 是与不同类型盘的连接。
  • 以太网接口,连接到一个网络。

因此,所有集成到单个芯片上的不仅仅是处理器本身,而是很多逻辑单元粘在一起所组成的更大的系统。

AMD 公司(Advanced Micro Devices,先进的微型设备)

紧随Intel公司的后面,相对落后一点,但是价格便宜。

C, 汇编, 机器代码

定义

  • 架构(ISA: Instruction set architecture, 指令集架构)
    需要理解或编写汇编/机器代码的处理器设计部分。

指令和指令集:这是编译器的目标,为你提供一系列指令,告诉机器确切地做什么。
发明硬件地人们想到了各种巧妙地实施指令方式,其中一些非常快,但需要大量地硬件,有些很慢,但根本不需要太多硬件。因此他们设法创建了这种称为指令集架构地抽象。
编译器地目标就是他们。
而如何最好地实现它是硬件研究者地工作。

  • 微架构
    对架构的补充。
    低级别地东西,如何实现它被称为微结构

  • 代码形式

    • 机器代码
      处理器执行的字节级程序。
    • 汇编代码
      机器代码的文本表示形式。

一些指令架构集:
* intel: x86,IA32, Itaniu, x86-64.
* ARM (Acorn RISC Machine,橡树种子精简指令机器)
ARM指令体系结构。
他们向公司出售使用其涉及的许可权力,他们真正卖的是知识产权而不是芯片。

汇编/机器代码

在这里插入图片描述

处理器部分:

  • PC: Program counter 程序计数器
    存储下一条指令的地址。

  • Register file 寄存器文件,寄存器集
    大量使用的程序文件

  • Condition Code 条件码
    状态寄存器。
    存储最近的算术或者逻辑运算的结果状态:产生的值为0?为正值或者负值?
    用于实现条件分支

存储部分:

  • Memory 内存
    字节可寻址数组
    代码和用户数据
    用于支持程序的堆栈

内存是你可以逻辑地认为只是一个字节数组,这就是机器程序员所看到的。
如前所述,它实际上是一种用不同方式实现虚构对象,操作系统和硬件之间存在一种协作,他们称之为虚拟内存,使处理器上运行的每个程序看起来拥有自己独立的字节数组,它们可以访问。即使它们实际上在物理内存内部都是共享这些字节数组。

C程序转换为目标代码

你有一个程序,是c程序,包含多个文件,将使用一些库代码。
编译过程:将你写的代码内容,转换为机器代码,并将其与编译后的,编译器为库生成合并代码,最终生成一个文件,可执行文件。
在这里插入图片描述

步骤:

  • 文本形式的c程序文件,通过编译器生成文本形式的汇编代码
  • 汇编代码,通过汇编器生成二进制的目标程序(字节形式)
  • 通过链接器,将不同的文件融合在一起,包含你单独的文件,已编译版本和库代码,最终生成一个可执行程序。
  • 实际有一些库在程序首次开始执行时动态导入的。

汇编器:

  • .s汇编文件转换为.o目标文件
  • 二进制编码指令
  • 几乎完整的可执行代码映像
  • 缺少不同文件中代码之间的链接(链接器来完成)

链接器:

  • 解决文件之间的引用
  • 与静态运行时(run-time)库结合使用,例如:malloc(),printf()等
  • 一些库是动态链接的。当程序开始执行时链接。

编译为汇编代码

  • c编码
long plus(long x, long y);void sumstore(long x, long y, long *dest)
{long t = plus(x,y);*dest = t;
}
  • 汇编码
    运行命令,生成汇编代码: gcc -Og -S sum.c

-Og: O optimize 优化。指定编译器做什么样的优化的规范。
如果不给它指示,它将生成完全未经过优化的代码,实际上很难读该代码,它的运行过程非常繁琐。
-O1: 这是过去打开优化器的过程,gcc 做了很多优化,为了优化目的,使代码很难理解。
因此,最近几代GCC中的一个出现这个名未g的调式级别

	.file	"sum.c".text.globl	sumstore.type	sumstore, @function
sumstore:
.LFB0:.cfi_startprocpushq	%rbx.cfi_def_cfa_offset 16.cfi_offset 3, -16movq	%rdx, %rbxcall	plusmovq	%rax, (%rbx)popq	%rbx.cfi_def_cfa_offset 8ret.cfi_endproc
.LFE0:.size	sumstore, .-sumstore.ident	"GCC: (GNU) 8.5.0 20210514 (Red Hat 8.5.0-15.0.2)".section	.note.GNU-stack,"",@progbits

以句点开头的.,这些实际上指示它们是别的东西,它们与某些被需要的信息有关,要给调试器提供,使他能够定位程序的各个部分,一些信息告诉链接器,这是一个全局定义的函数,还有一些其他信息,我们暂时不需要考虑,忽视这些信息,是它们更具有可读性。

百分号前缀%: 寄存器名称
pushq: 将东西推到栈上。
movq: 将它从一个地方复制到另一个地方。
call:调用一些过程
popq: 和pushq相对的命令,从栈中取出东西。
ret:特定函数的返回。

每一行都是一个指令(用文本写的),每条都将变成目标代码文件中的一个实际指令。

汇编的特性:数据类型

  • 整型数据类型:1,2,4,8 字节
    在整数数据类型,它们不区分符号与无符号的存储方式。
    地址和指针,都是以数字形式存储在计算机中。

  • 浮点数数据类型:4,8,10 字节

  • 代码;一系列指令编码的字节序列

  • 没有聚合类型:数组和结构体
    只是在内存中巧妙地分配了字节

汇编的特性:操作

  • 实现算术运算方法通过寄存器和内存数据

  • 在内存和寄存器之间转换数据

    • 从内存中将数据加载到寄存器
    • 将寄存器的数据存储到内存
  • 转移控制

    • 非条件跳转 到/从 过程
    • 条件分支

机器指令解析示例

  • c代码
    将t的值存存储到dest指定的位置。
*dest = t
  • 汇编代码
movq %rax, (%rbx)

移动8字节值到内存:4字
操作数:

    * t: 寄存器 %rax* dest: 寄存器 %rbx* *dest: 内存 M[%rbx]
  • 目标代码
    3 字节指令。
0x40059e: 48 89 03

存储地址 0x40059e

拓展:
变量的所有名称,在汇编代码级别,机器代码级别完全丢失,东西都变成了寄存器和内存中的某个位置。

反汇编代码

先生成目标代码:gcc -Og sum.c -c

反汇编器 objdump
objdump -d sum.o
  • 用于检查目标代码
  • 分析一系列指令的代码
  • 产生汇编代码的进士索引
  • 可以在a.out(可执行文件) 或者 .o(目标文件)运行

反汇编得到的汇编代码:

0000000000000000 <sumstore>:0:   53                      push   %rbx1:   48 89 d3                mov    %rdx,%rbx4:   e8 00 00 00 00          callq  9 <sumstore+0x9>9:   48 89 03                mov    %rax,(%rbx)c:   5b                      pop    %rbxd:   c3                      retq
反汇编 gdb

gdb 是一个非常强大的调试程序。
你可以单步检查程序并对其中的程序进行一些操作,如果它的源代码可用,可以用它来调试。

安装gdb:

yum install gdb

调试程序:

gdb sum
disassemble sumstore

gdb 作用:

  • 可以单步检查程序并对其中的程序进行一些操作。(源代码调试)
  • 可以用来反汇编

反汇编是一种可以用作任何逆向工程工具的工具。

反汇编Microsoft Word:
Microsoft Word 和其他程序一样,只是一个可执行文件,而那个可执行文件只是一堆编码指令的字节。
如果你能找到文件位置,应用程序的实际可执行文件的位置。

objdump -d WINWORD.EXE

汇编基础:寄存器,操作数,移动

寄存器

在这里插入图片描述

如果使用的是%r 开头的寄存器,你会得到64位。
如果使用的是 %e 开头的寄存器版本,你会得到32位。
%e 版本指示较大%r 实体低32位。
实际用法更多,你也可以引用低阶16位,和低8位。

从IA32 到 x86-64的变化之一是将寄存器数量增加一倍。

移动数据 mov

指令:

movq Source, Dest

操作数类型:

  • 立即数 Immediate: 整型常数
    示例:$0x400, $-533
    和C常量,但是以$为前缀
    编码1,2,4字节

  • 寄存器 Register :16个寄存器中的一个
    示例:%rax, %r13
    %rsp 保留自己的特殊用途
    其他的寄存器有特殊用途对于特殊指令。

  • 内存 Memory: 在寄存器给出的地址上有8个连续字节的内存
    最简单的示例:(%rax)
    各种其他“地址模式”
    在这里插入图片描述

注意事项:

  • 将立即值作为目的地没有意义,它是常数
  • 出于硬件设计者的方便,它不允许你直接从一个内存位置复制到另一个内存位置。
    你需要两个指令,一个从内存中读取值,将其复制到寄存器。第二个是在寄存器中取值并将其写入内存。

q: quad 四字节

简单的内存地址模式

  • 正常模式
(R)  Mem[Reg[R]]

寄存器R指定内存地址。

示例:

movq (%rcx), $rax
  • 位移模式(Displacement)
D(R)  Mem(Reg[R] + D)

寄存器R指定内存区域开始的位置。
常量位移D指出偏移量。

示例:

movq 8(%rbp), %rdx
地址模式示例
  • c语言代码
void swap(long *xp, long*yp)
{long t0 = *xp;long t1 = *yp;*xp = t1;*yp = t0;
}
  • 汇编代码
    运行命令:gcc -S -Og swap.c
swap:movq	(%rdi), %rax  # t0 = *xpmovq	(%rsi), %rdx  # t1 = *ypmovq	%rdx, (%rdi)  # *xp = t1movq	%rax, (%rsi)  # *yp = t0ret

寄存器对应的值:

  • %rdi xp
  • %rsi yp
  • %rax t0
  • %rdx t1

操作流程:
在这里插入图片描述

实际中交换方法

实际中我们只会使用中间变量来进行交换:

void swap(long *xp, long*yp)
{long t0 = *xp;*xp = *yp;*yp = t0;
}

我们用命令得到汇编代码,会发现和上面的汇编代码是一样的。

为什么?
回到前面我们所说的mov指令。它不允许你直接从一个内存位置复制到另一个内存位置。
你需要两个指令,一个从内存中读取值,将其复制到寄存器。第二个是在寄存器中取值并将其写入内存。

所以 *xp = *yp的执行就是:

long t1 = *yp
*xp = t1

所以实际中我们这么只使用一个中间变量进行操作,和使用两个中间变量进行操作并没有多大影响。
只是代码更简洁一点而已。

完整的内存地址模式

  • 常用形式
D(Rb, Ri, S)    Mem[Reg[Rb] + S*Reg[Ri]+D]

D: Displacement, 位移。恒定位移 1,2,4 字节
Rb: Base Register, 基础寄存器。 16个寄存器中的一个。
Ri: Index Register, 索引寄存器。特别是%rsp。
S: Scale, 缩放。 1,2,4,8 固定是这些数。

这是实现数组索引的一种自然方式。
如果这是一组数组索引,我们必须通过我的数据类型的字节数来缩放索引值,如果它是一个int我们必须将索引缩放四倍,如果它是long,我们必须将其缩放八倍。(这就是S必须是1,2,4,8这些数)

  • 特殊形式
    缺失其中一些项。
(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]	D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]	(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]	

示例:
在这里插入图片描述

0xf000 = 1111 0000 0000 0000
2 * 0xf000 = 二进制左移1位 = 0001 1110 0000 0000 0000 = 0x1e000
2 * 0xf000 = 2 * 15 = 30 = 0x1e000

地址计算指令 lea

lea : load effective address, 加载有效地址。
对上面内存地址模式的运用。

leaq Src, Dst

Src : 地址模式表达式
Dst : 设置dst为用表达式表示的地址

使用:

  • 计算没有内存引用的地址
    例如:p = &x[i]

  • 计算算术表达式: x + k*y
    k = 1,2,4,或8

示例

  • c 代码
long m12(long x)
{return x*12;
}
  • 汇编码
    教程中得到:
leaq (%rdi,%rdi,2), %rax # t <- x+x*2
salq $2, %rax # return t<<2

我得到:

leaq	(%rdi,%rdi,2), %rdx
leaq	0(,%rdx,4), %rax

算术运算 和 逻辑运算

  • 两个操作数的指令
格式 计算
addq Src,Dest Dest = Dest +	Src
subq Src,Dest Dest = Dest - Src
imulq Src,Dest Dest	= Dest * Src
salq Src,Dest Dest = Dest << Src
sarq Src,Dest Dest = Dest >> Src
shrq Src,Dest Dest = Dest >> Src
xorq Src,Dest Dest = Dest ^	Src
andq Src,Dest Dest = Dest &	Src
orq Src,Dest Dest =	Dest | Src
  • 一个操作数的指令
incq Dest Dest = Dest + 1
decq Dest Dest = Dest - 1
negq Dest Dest = - Dest
notq Dest Dest = ~Dest

注意事项:

  • 操作数的顺序与你期望他们的顺序相反,源操作数在前,目的操作数在后面。

示例

  • c代码
long arith(long x, long y, long z)
{long t1 = x+y;long t2 = z+t1;long t3 = x+4;long t4 = y * 48;long t5 = t3 + t4;long rval = t2 * t5;return rval;
} 
  • 汇编代码
leaq	(%rdi,%rsi), %rax      # t1
addq	%rdx, %rax             # t2
leaq	(%rsi,%rsi,2), %rdx    # 3y
salq	$4, %rdx               # t4 = 4 * 3y
leaq	4(%rdi,%rdx), %rcx     # t5
imulq	%rcx, %rax             # rval
  • 寄存器对应的变量
%rdi x
%rsi y
%rdx z
%rax t1,t2,	rval
%rdx t4
%rcx t5

《深入理解计算机系统》书籍学习笔记

《深入理解计算机系统》学习笔记 - 第一课 - 课程简介
《深入理解计算机系统》学习笔记 - 第二课 - 位,字节和整型
《深入理解计算机系统》学习笔记 - 第三课 - 位,字节和整型
《深入理解计算机系统》学习笔记 - 第四课 - 浮点数
《深入理解计算机系统》学习笔记 - 第四课 - 机器级别的程序

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/259073.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据库的索引

索引的特点 1&#xff09;加快查询的速度 2&#xff09;索引自身是一种数据结构&#xff0c;也要占用存储空间 3&#xff09;当我们需要进行增删改的时候&#xff0c;也要对索引进行更新&#xff08;也需要额外的空间开销&#xff09; sql操作 查看索引 show index from …

超越GPT4.0,5分钟介绍谷歌Gemini最新功能,以及登录体验

上段时间还在吃OpenAI后宫争斗戏的瓜&#xff0c;今天又迎来了AI圈子地震的大事件&#xff0c;因为号称GPT4.0强劲对手的Google-Gemini正式发布啦&#xff01;作为新一代多模态AI模型&#xff0c;以强大的性能和广泛的应用前景吸引了全球AI圈友们的关注。 AI进化速度真的太快了…

Numpy数组的运算(第7讲)

Numpy数组的运算(第7讲)         🍹博主 侯小啾 感谢您的支持与信赖。☀️ 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ…

Jmeter用于接口测试中,关联如何实现

Jmeter用于接口测试时&#xff0c;后一个接口经常需要用到前一次接口返回的结果&#xff0c;应该如何获取前一次请求的结果值&#xff0c;应用于后一个接口呢&#xff0c;拿一个登录的例子来说明如何获取。 1、打开jmeter, 使用的3.3的版本&#xff0c;新建一个测试计划&#…

排序算法-插入/希尔排序

1 插入排序 1.1基本思想&#xff1a; 直接插入排序是一种简单的插入排序法&#xff0c;其基本思想是&#xff1a;把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中&#xff0c;直到所有的记录插入完为止&#xff0c;得到一个新的有序序列 。 1.2直…

安装以及使用Minio分布式文件系统

简介 MinIO 是一个非常轻量的服务,可以很简单的和其他应用的结合使用&#xff0c;它兼容亚马逊 S3 云存储服务接口&#xff0c;非常适合于存储大容量非结构化的数据&#xff0c;例如图片、视频、日志文件、备份数据和容器/虚拟机镜像等。 它一大特点就是轻量&#xff0c;使用…

算法学习系列(七):快速排序、归并排序

目录 引言一、快速排序1.模板一2.模板二 二、归并排序1.模板一 三、例题扩展1.第k个数2.逆序对的个数 引言 对于快排和归并排序这个相信大家都知道&#xff0c;是非常重要的&#xff0c;不论是在找工作、考研、竞赛&#xff0c;这两个排序可以说是非常的重要&#xff0c;在面试…

在线工具分享SQL转ElasticSearchDSL语句

&#x1f60a; 作者&#xff1a; 瓶盖子io &#x1f496; 主页&#xff1a; 瓶盖子io-CSDN博客

Go实现http同步文件操作 - 增删改查

http同步文件操作 - 增删改查 http同步文件操作 - 增删改查1. 前置要求1.1. 构建结构体 文件名 文件内容1.1.1. 页面结构体1.1.2. 为Page结构体绑定方法&#xff1a;Save1.1.3. 对Page结构体支持页面内容查看方法&#xff0c;同时提供页面文件是否存在的方法 1.2. 简单验证上面…

【思路代码详解】2023mathorcup大数据复赛B题妈妈杯高校数学建模挑战赛电商零售商家需求预测及库存优化问题

2023 年 MathorCup 高校数学建模挑战赛——大数据竞赛 赛道 B复赛&#xff1a;电商零售商家需求预测及库存优化问题 问题一 目标&#xff1a;制定补货计划&#xff0c;基于预测销量。 背景&#xff1a;固定库存盘点周期NRT1, 提前期LT3天。 初始条件&#xff1a;所有商品…

在线教育小程序如何一键生成App

在线教育行业是指通过互联网平台提供的各种教育和培训服务。这不仅包括传统的课程学习&#xff0c;还涵盖了一系列创新的学习模式。例如&#xff0c;同步在线课程允许学生和教师在同一时间在线&#xff0c;通过实时的视频和聊天工具进行互动。而异步在线课程则为学生提供了更大…

nodejs流

什么是流 stream 流是用于在 Node.js 中处理流数据的抽象接口。 node:stream 模块提供了用于实现流接口的 API。 什么是流数据 流数据是指一组顺序、大量、快速、连续到达的数据序列&#xff0c;一般情况下数据流可被视为一个随时间延续而无限增长的动态数据集合。流数据应用…