cache 2.单机并发缓存

0.对原教程的一些见解

个人认为原教程中两点知识的引入不够友好。

首先是只读数据结构 ByteView 的引入使用是有点迷茫的,可能不能很好理解为什么需要ByteView。

第二是主体结构 Group的引入也疑惑。其实要是熟悉groupcache,那对结构Group的使用是清晰明白的。而看该教程的人可能是没有了解过groupcache,直接就引入结构Group,可能不好理解。这一章节希望可以讲明白这两点。

1.统一的缓存的value对象

//该类型实现了NodeValue接口
type String stringfunc (d String) Len() int {return len(d)
}

在上节讲解中, 我们存入的每一个元素(键值对)都要计算大小。为了能计算大小,那存入缓存的 value 对象必须实现NodeValue接口的Len()方法。上一节的测试用例中存储的value对象是String(也即是string)。

那么问题来了, 我们存入的 value 可能是 string, int, 也可能自定义的结构体User等等。如果为每一种类型都实现一个 Len() 方法那确实是繁琐。因此,我们希望将存入的每个 value 都转化为统一的类型, 比如:字节数组 []byte。

我们可以抽象了一个只读数据结构 ByteView 用来表示缓存值

ByteView 只有一个数据成员,b []byte,b 将会存储真实的缓存值。

b 是只读的,使用 ByteSlice() 方法返回一个拷贝,防止缓存值被外部程序修改。

//缓存值的抽象与封装
type ByteView struct {b []byte
}func (v ByteView) Len() int {return len(v.b)
}func (v ByteView) ByteSlice() []byte {return cloneByte(v.b)
}func cloneByte(b []byte) []byte {c := make([]byte, len(b))copy(c, b)return c
}func (v ByteView) String() string {return string(v.b)
}

2.实现缓存并发读写

上一节实现的LRU算法是不支持并发读写的。Go中map不是线程安全的。要实现并发读写map,需要加锁,可以使用sync.Mutex。

sync.Mutex 是一个互斥锁,可以由不同的协程加锁和解锁。

先回顾下上一节定义的缓存的整体数据结构

type Cache struct {maxBytes  int64      //允许的能使用的最大内存nbytes    int64      //已使用的内存ll        *list.List //双向链表cache     map[string]*list.ElementOnEvicted func(key string, value NodeValue)
}

要是想的简单点,我们可以在该结构体Cache内部加上sync.Mutex并修改其方法的部分原有逻辑来实现并发读写。但这样就破坏了对扩展开放,对修改关闭的面向对象原则。这是不好的。

 定义加锁的缓存对象

我们可以在Cache结构体基础上再封装一个可以支持并发读写的对象。

type cache struct {mutex      sync.Mutexlru        *lru.CachecacheBytes int64
}

显然,该新对象中是需要有个互斥锁变量。而每个缓存对象都有能使用的最大内存量上限,使用cacheBytes 字段来存储这个值。

该cache对象也基于互斥锁和lru封装了 get 和 add 方法。

func (c *cache) add(key string, value ByteView) {c.mutex.Lock()defer c.mutex.Unlock()if c.lru == nil {c.lru = lru.New(c.cacheBytes, nil)}c.lru.Add(key, value)
}func (c *cache) get(key string) (value ByteView, ok bool) {c.mutex.Lock()defer c.mutex.Unlock()if c.lru == nil {return}if v, ok := c.lru.Get(key); ok {return v.(ByteView), ok}return
}

3.提升缓存并发读写能力

互斥锁引发的性能问题

引入锁之后,可能会引起性能问题,思考如下场景:

当有 A个线程访问库存的缓存数据时, 我们给 cache 对象加了锁, 如果此时有 B个线程来访问商品缓存数据,这 A + B 个线程就需要共同竞争一把锁。

要是线程数量大的话,对性能是有影响的,那是因为所有的缓存都被一把锁把持住。那要是我们可以把缓存进行分组,这样首先就可以不用所有的线程都去抢一把锁了。

将缓存数据进行分组

为了提高缓存系统的并发读写的性能(降低锁的竞争程度), 我们想想是否可以再细分锁的范围,分段锁的设计。

可以理解成是先分段再锁,将原本的所有缓存分成了若干段,分别将这若干段放在了不同的组中,每个组有各自的锁,以此提高效率。

如此设计之后, 不同组的存缓数据就隔离了起来, 访问同一组数据的线程才会互相竞争。

这就引出了Group这个结构。

4.Group结构

定义一个分组结构,从上图也可知道,要去访问缓存,就需去找到该组,那如何辨别是这个组呢,这里就是通过组的名字去辨别的,每个组都有个名字。

// 紧接着我们定义一个 分组 类型
type Group struct {name      string // 分组名称mainCache cache  // 单个缓存对象
}

这时有多个组后,那如何通过组名字快速找到该组了?还是要用map。那肯定又涉及到多个线程并发读写 groups 。这里是找到对应组名字的组而加锁的。我们可以考虑用 读写锁 来解决这个问题。

这里使用读写锁应该比使用互斥锁可以提高并发度。

来看看创建组和通过名字获取组的函数

var (rwMu   sync.RWMutexgroups = make(map[string]*Group)
)func NewGroup(name string, cacheBytes int64) *Group {rwMu.Lock()defer rwMu.Unlock()g := &Group{name:      name,mainCache: cache{cacheBytes: cacheBytes},}groups[name] = greturn g
}// 获取 Group 对象的方法
func GetGroup(name string) *Group {rwMu.RLock()defer rwMu.RUnlock()g := groups[name]return g
}

缓存查询回调方法

我们要考虑一种情况:如果缓存不存在,应从数据源(文件,数据库等)获取数据并添加到缓存中。

该Cache 是否应该支持多种数据源的配置呢?不应该,一是数据源的种类太多,没办法都实现;二是扩展性不好。如何从源头获取数据,应该是用户决定的事情,我们就把这件事交给用户好了。因此,我们设计了一个回调函数(callback),在缓存不存在时,就可以调用该函数,得到源数据。

这个回调方法我们可以直接定义在上面的 Get 方法的入参中,也可以放在 Group 对象中,为了方便,我们放在Group内。

type Group struct {name      string // 组名mainCache cache  // 单个缓存对象// 新增回调函数getter    Getter}type Getter interface {Get(key string) ([]byte, error)
}type GetterFunc func(key string) ([]byte, error)func (f GetterFunc) Get(key string) ([]byte, error) {return f(key)
}

 函数类型实现某一个接口,称之为接口型函数,那么该函数也是接口。

其好处:当一个函数的参数类型是接口,那使用者在调用时既能够传入函数作为参数,也能够传入实现了该接口的结构体作为参数

接口型函数不太理解的话,可以看Go接口型函数。

接口型函数在这章节的最后测试中也会进行讲解的,测试中有例子。

 Group 的 Get 方法

首先从本地缓存中查找,若是有则直接返回该缓存数据即可。

若是缓存不存在(即是没击中),则调用 load 方法,调用用户回调函数 g.getter.Get() 获取源数据,并且将源数据添加到缓存 mainCache 中。

func (g *Group) Get(key string) (ByteView, error) {if v, ok := g.mainCache.get(key); ok {return v, nil}return g.load(key)
}func (g *Group) load(key string) (ByteView, error) {bytes, err := g.getter.Get(key)if err != nil {return ByteView{}, err}value := ByteView{b: cloneByte(bytes)}g.mainCache.add(key, value)    //将源数据添加到缓存mainCachereturn value, nil
}

至此,这一章节的单机并发缓存就已经完成了。

5.测试

// 缓存中没有的话,就从该db中查找
var db = map[string]string{"tom":  "100","jack": "200","sam":  "444",
}// 统计某个键调用回调函数的次数
var loadCounts = make(map[string]int, len(db))

创建 group 实例,并测试 Get 方法。

主要测试了两种情况

  • 1)在缓存为空的情况下,能够通过回调函数获取到源数据。
  • 2)在缓存已经存在的情况下,是否直接从缓存中获取,为了实现这一点,使用 loadCounts 统计某个键调用回调函数的次数,如果次数大于1,则表示调用了多次回调函数,没有缓存。
func main() {//传函数入参    cache.GetterFunc(funcCbGet)是进行类型转换,不是执行函数cache := cache.NewGroup("scores", 2<<10, cache.GetterFunc(funcCbGet))//传结构体入参,也可以// cbGet := &search{}// cache := cache.NewGroup("scores", 2<<10, cbGet)for k, v := range db {if view, err := cache.Get(k); err != nil || view.String() != v {fmt.Println("failed to get value of ",k)}if _, err := cache.Get(k); err != nil || loadCounts[k] > 1 {fmt.Printf("cache %s miss", k)}}if view, err := cache.Get("unknown"); err == nil {fmt.Printf("the value of unknow should be empty, but %s got", view)}else {fmt.Println(err)}
}// 函数的
func funcCbGet(key string) ([]byte, error) {fmt.Println("callback search key: ", key)if v, ok := db[key]; ok {if _, ok := loadCounts[key]; !ok {loadCounts[key] = 0}loadCounts[key] += 1return []byte(v), nil}return nil, fmt.Errorf("%s not exit", key)
}// 结构体,实现了Getter接口的Get方法,
type search struct {
}func (s *search) Get(key string) ([]byte, error) {fmt.Println("struct callback search key: ", key)if v, ok := db[key]; ok {if _, ok := loadCounts[key]; !ok {loadCounts[key] = 0}loadCounts[key] += 1return []byte(v), nil}return nil, fmt.Errorf("%s not exit", key)
}

讨论接口型函数

NewGroup中的最后一个参数类型是接口类型。

这里既可以传入函数,也可以传入结构体变量。

而按照这个例子,传入函数是很方便的。只写一个函数就行,而做成结构体的话,还需要新建一个结构体类型,再实现Get方法,这就是很麻烦的。

这里可能就有疑惑了,大家通过这个例子明白,这样做是既可以传入函数,也可以传入结构体变量。但从这例子来看,没必要这样做,就只是传函数就行啦,没必要把NewGroup的最后那个参数类型做成接口类型,只弄成函数类型就行啦。

这是这个例子的,要是在其他更加复杂的情况呢。比如:如果对数据库的操作需要很多信息,地址、用户名、密码,还有很多中间状态需要保持,比如超时、重连、加锁等等。这种情况下,更适合将其封装为一个结构体,再把该结构体传入更好。

既能够将普通的函数类型(需类型转换)作为参数,也可以将结构体作为参数,使用更为灵活,可读性也更好,这就是接口型函数的价值。

这样就不用等我们想要用结构体传参时候,发现类型不符合,传参失败就需要修改代码,这时候就麻烦了。

完整代码:https://github.com/liwook/Go-projects/tree/main/go-cache/2-single-node

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/259835.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

增强现实中的真实人/机/环与虚拟人/机/环

在增强现实中&#xff0c;真实人与虚拟人、真实机器与虚拟机器、真实环境与虚拟环境之间有着密切的关系。增强现实技术通过将真实与虚拟相结合&#xff0c;打破了传统的现实世界与虚拟世界的界限&#xff0c;创造出了一种新的体验方式。真实人、真实机器和真实环境与其对应的虚…

AI 训练框架:Pytorch TensorFLow MXNet Caffe ONNX PaddlePaddle

https://medium.com/jit-team/bridge-tools-for-machine-learning-frameworks-3eb68d6c6558

爬虫 selenium语法 (八)

目录 一、为什么使用selenium 二、selenium语法——元素定位 1.根据 id 找到对象 2.根据标签属性的属性值找到对象 3.根据Xpath语句获取对象 4.根据标签名获取对象 5.使用bs语法获取对象 6.通过链接文本获取对象 三、selenium语法——访问元素信息 1.获取属性的属性值…

第一课【习题】给应用添加通知和提醒

构造进度条模板通知&#xff0c;name字段当前需要固定配置为downloadTemplate。 给通知设置分发时间&#xff0c;需要设置showDeliveryTime为false。 OpenHarmony提供后台代理提醒功能&#xff0c;在应用退居后台或退出后&#xff0c;计时和提醒通知功能被系统后台代理接管…

重写 AppiumService 类,添加默认启动参数,并实时显示启动日志

一、前置说明 在Appium的1.6.0版本中引入了AppiumService类&#xff0c;可以很方便的通过该类来管理Appium服务器的启动和停止。经过测试&#xff0c;使用该类的实例执行关闭server时&#xff0c;并没有释放端口号&#xff0c;会导致第二次启动时失败。另外&#xff0c;使用该…

(env: Windows,mp,1.06.2308310; lib: 3.2.4) uniapp微信小程序

应公司需求&#xff0c;在特定情况下需要修改ip 在开发过程中出现的小插曲 1、第一种情况&#xff1a;重复声明 2、第二种情况&#xff1a; 应官方要求&#xff0c;需要跳转的 tabBar 页面的路径&#xff08;需在 pages.json 的 tabBar 字段定义的页面&#xff09;&#xff0…

Python---类的综合案例

1、需求分析 设计一个Game类 属性&#xff1a; 定义一个类属性top_score记录游戏的历史最高分 定义一个实例属性player_name记录当前游戏的玩家姓名 方法&#xff1a; 静态方法show_help显示游戏帮助信息 类方法show_top_score显示历史最高分 实例方法start_game开始当前…

【开源】基于Vue+SpringBoot的陕西非物质文化遗产网站

文末获取源码&#xff0c;项目编号&#xff1a; S 065 。 \color{red}{文末获取源码&#xff0c;项目编号&#xff1a;S065。} 文末获取源码&#xff0c;项目编号&#xff1a;S065。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 设计目标2.2 研究内容2.3 研究方法与…

Plonky2 = Plonk + FRI

Plonky2由Polygon Zero团队开发&#xff0c;实现了一种快速的递归SNARK&#xff0c;据其团队公开的基准测试&#xff0c;2020年&#xff0c;以太坊第一笔递归证明需要60s生成&#xff0c;而于今Plonky2在 MacBook Pro上生成只需 170 毫秒。 下面将逐步剖析Plonky2。 整体构造 …

uniapp实战 —— 弹出层 uni-popup (含vue3子组件调父组件的方法)

效果预览 弹出的内容 src\pages\goods\components\ServicePanel.vue <script setup lang"ts"> // 子组件调父组件的方法 const emit defineEmits<{(event: close): void }>() </script><template><view class"service-panel"…

重塑未来工作方式,亚马逊云科技re:Invent推出生成式AI助手Amazon Q

亚马逊云科技在re:Invent 2023宣布推出Amazon Q&#xff0c;这是一种新型生成式AI支持的助手&#xff0c;专门用于满足办公场景需要&#xff0c;可以根据客户业务进行定制。客户可以快速获得复杂问题的相关答案、生成内容并采取行动——所有这些都基于客户自身的信息存储库、代…

android项目实战之编辑器集成

引言 项目需要用到编辑器&#xff0c;采用RichEditor&#xff0c;如下效果 实现 1. 引入库2 implementation jp.wasabeef:richeditor-android:2.0.0 2. XML <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width&q…