时间序列预测 — VMD-LSTM实现单变量多步光伏预测(Tensorflow):单变量转为多变量

目录

1 数据处理

1.1 导入库文件

1.2 导入数据集

1.3 缺失值分析

2 VMD经验模态分解

3 构造训练数据

4 LSTM模型训练

5 预测


1 数据处理

1.1 导入库文件

import time
import datetime
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt  
from sampen import sampen2  # sampen库用于计算样本熵
from vmdpy import VMD  # VMD分解库import tensorflow as tf 
from sklearn.cluster import KMeans
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error, mean_absolute_percentage_error 
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Dropout, LSTM, GRU
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping# 忽略警告信息
import warnings
warnings.filterwarnings('ignore')  

1.2 导入数据集

实验数据集采用数据集8:新疆光伏风电数据集(下载链接),数据集包括组件温度(℃) 、温度(°)    气压(hPa)、湿度(%)、总辐射(W/m2)、直射辐射(W/m2)、散射辐射(W/m2)、实际发电功率(mw)特征,时间间隔15min。对数据进行可视化:

# 导入数据
data_raw = pd.read_excel("E:\\课题\\08数据集\\新疆风电光伏数据\\光伏2019.xlsx")
data_raw
from itertools import cycle
# 可视化数据
def visualize_data(data, row, col):cycol = cycle('bgrcmk')cols = list(data.columns)fig, axes = plt.subplots(row, col, figsize=(16, 4))fig.tight_layout()if row == 1 and col == 1:  # 处理只有1行1列的情况axes = [axes]  # 转换为列表,方便统一处理for i, ax in enumerate(axes.flat):if i < len(cols):ax.plot(data.iloc[:,i], c=next(cycol))ax.set_title(cols[i])else:ax.axis('off')  # 如果数据列数小于子图数量,关闭多余的子图plt.subplots_adjust(hspace=0.6)plt.show()visualize_data(data_raw.iloc[:,1:], 2, 4)

​单独查看部分功率数据,发现有较强的规律性。

​因为只是单变量预测,只选取实际发电功率(mw)数据进行实验:

1.3 缺失值分析

首先查看数据的信息,发现并没有缺失值

data_raw.info()

 进一步统计缺失值

data_raw.isnull().sum()

2 VMD经验模态分解

使用VMD将目标信号分解成若干个模态,进一步可视化分解结果

# VMD分解函数
# signal: 输入信号
# alpha: 正则化参数
# tau: 时间尺度参数
# K: 分量数量
# DC: 是否包括直流分量
# init: 初始化方法
# tol: 收敛容限
# n_ite: 最大迭代次数
def vmd_decompose(series=None, alpha=2000, tau=0, K=7, DC=0, init=1, tol=1e-7, draw=True): # 得到 VMD 分解后的各个分量、分解后的信号和频率imfs_vmd, imfs_hat, omega = VMD(series, alpha, tau, K, DC, init, tol)  # 将 VMD 分解分量转换为 DataFrame, 并重命名df_vmd = pd.DataFrame(imfs_vmd.T)df_vmd.columns = ['imf'+str(i) for i in range(K)]return df_vmd
df_vmd = vmd_decompose(data_raw['实际发电功率(mw)'])  # 对 df_raw_data['AQI'] 进行 VMD 分解,并将结果赋值给 df_vmd
# 绘制 df_vmd 的数据,以子图形式显示每个分量
ax = df_vmd.plot(title='VMD Decomposition', figsize=(16,8), subplots=True,fontsize=16)
for a in ax:a.legend(loc='upper right',prop={'size': 14})plt.subplots_adjust(hspace=0.5)

将原始数据和分解后的模态合并

df_vmd['sum'] = data_raw['实际发电功率(mw)']  # 将 data_raw['实际发电功率(mw)']添加到 df_vmd 中的 'sum' 列

 这里利用VMD-LSTM进行预测的思路是通过VMD将原始功率分解为多个变量,然后将分解变量作为输入特征,将原始出力功率作为标签,将单变量转为多变量进行预测。

3 构造训练数据

构造训练数据,也是真正预测未来的关键。首先设置预测的timesteps时间步、predict_steps预测的步长(预测的步长应该比总的预测步长小),length总的预测步长,参数可以根据需要更改。

timesteps = 96*5 #构造x,为96*5个数据,表示每次用前96*5个数据作为一段
predict_steps = 96 #构造y,为96个数据,表示用后96个数据作为一段
length = 96 #预测多步,预测96个数据
feature_num = 7 #特征的数量

通过前5天的timesteps数据预测后一天的数据predict_steps个,需要对数据集进行滚动划分(也就是前timesteps行的特征和后predict_steps行的标签训练,后面预测时就可通过timesteps行特征预测未来的predict_steps个标签)。因为是多变量,特征和标签分开划分,不然后面归一化会有信息泄露的问题。

# 构造数据集,用于真正预测未来数据
# 整体的思路也就是,前面通过前timesteps个数据训练后面的predict_steps个未来数据
# 预测时取出前timesteps个数据预测未来的predict_steps个未来数据。
def create_dataset(datasetx,datasety,timesteps=36,predict_size=6):datax=[]#构造xdatay=[]#构造yfor each in range(len(datasetx)-timesteps - predict_steps):x = datasetx[each:each+timesteps]y = datasety[each+timesteps:each+timesteps+predict_steps]datax.append(x)datay.append(y)return datax, datay

数据处理前,需要对数据进行归一化,按照上面的方法划分数据,这里返回划分的数据和归一化模型,函数的定义如下:

# 数据归一化操作
def data_scaler(datax,datay):# 数据归一化操作scaler1 = MinMaxScaler(feature_range=(0,1))scaler2 = MinMaxScaler(feature_range=(0,1))datax = scaler1.fit_transform(datax)datay = scaler2.fit_transform(datay)# 用前面的数据进行训练,留最后的数据进行预测trainx, trainy = create_dataset(datax[:-timesteps-predict_steps,:],datay[:-timesteps-predict_steps,0],timesteps, predict_steps)trainx = np.array(trainx)trainy = np.array(trainy)return trainx, trainy, scaler1, scaler2

然后对数据按照上面的函数进行划分和归一化。通过前5天的96*5数据预测后一天的数据96个,需要对数据集进行滚动划分(也就是前96*5行的特征和后96行的标签训练,后面预测时就可通过96*5行特征预测未来的96个标签)

datax = df_vmd[:,:-1]
datay = df_vmd[:,-1].reshape(df_vmd.shape[0],1)
trainx, trainy, scaler1, scaler2 = data_scaler(datax, datay)

4 LSTM模型训练

首先搭建模型的常规操作,然后使用训练数据trainx和trainy进行训练,进行50个epochs的训练,每个batch包含128个样本(建议使用GPU进行训练)。预测并计算误差,训练好将模型保存,并进行可视化,将这些步骤封装为函数。

# # 创建lSTM模型
def LSTM_model_train(trainx, trainy):# 调用GPU加速gpus = tf.config.experimental.list_physical_devices(device_type='GPU')for gpu in gpus:tf.config.experimental.set_memory_growth(gpu, True)# LSTM网络构建 start_time = datetime.datetime.now()model = Sequential()model.add(LSTM(128, input_shape=(timesteps, feature_num), return_sequences=True))model.add(Dropout(0.5))model.add(LSTM(128, return_sequences=True))model.add(LSTM(64, return_sequences=False))model.add(Dense(predict_steps))model.compile(loss="mean_squared_error", optimizer="adam")# 模型训练model.fit(trainx, trainy, epochs=50, batch_size=128)end_time = datetime.datetime.now()running_time = end_time - start_time# 保存模型model.save('vmd_lstm_model.h5')# 返回构建好的模型return modely
model = LSTM_model_train(trainx, trainy)

5 预测

首先加载训练好后的模型

# 加载模型
from tensorflow.keras.models import load_model
model = load_model('vmd_lstm_model.h5')

准备好需要预测的数据,训练时保留了6天的数据,将前5天的数据作为输入预测,将预测的结果和最后一天的真实值进行比较。

y_true = datay[-timesteps-predict_steps:-timesteps]
x_pred = datax[-timesteps:]

预测并计算误差,并进行可视化,将这些步骤封装为函数。

# 预测并计算误差和可视化
def predict_and_plot(x, y_true, model, scaler, timesteps):# 变换输入x格式,适应LSTM模型predict_x = np.reshape(x, (1, timesteps, feature_num))  # 预测predict_y = model.predict(predict_x)predict_y = scaler.inverse_transform(predict_y)y_predict = []y_predict.extend(predict_y[0])# 计算误差r2 = r2_score(y_true, y_predict)rmse = mean_squared_error(y_true, y_predict, squared=False)mae = mean_absolute_error(y_true, y_predict)mape = mean_absolute_percentage_error(y_true, y_predict)print("r2: %.2f\nrmse: %.2f\nmae: %.2f\nmape: %.2f" % (r2, rmse, mae, mape))# 预测结果可视化cycol = cycle('bgrcmk')plt.figure(dpi=100, figsize=(14, 5))plt.plot(y_true, c=next(cycol), markevery=5)plt.plot(y_predict, c=next(cycol), markevery=5)plt.legend(['y_true', 'y_predict'])plt.xlabel('时间')plt.ylabel('功率(kW)')plt.show()return y_predict
y_predict_nowork = predict_and_plot(x_pred, y_true, model, scaler2, timesteps)

最后得到可视化结果,发下可视化结果并不是太好,可以通过调参和数据处理进一步提升模型预测效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/259841.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

复亚消防无人机 智能守护浙江安防

在党中央高度重视防灾减灾救灾工作的背景下&#xff0c;浙江省深化消防救援保障体系建设&#xff0c;借助智慧消防举措&#xff0c;提高了城市的战勤保障能力。特别是在古城区&#xff0c;复亚助力浙江打造智慧消防系统&#xff0c;通过消防无人机全自动飞行系统&#xff0c;成…

EXP-00056: 遇到 ORACLE 错误 12154 ORA-12154: TNS: 无法解析指定的连接标识符

exp oas/oasoas filed:\daochu.dmp owner(s) 导出特定用户 //exp 用户名/密码数据库 filed:\daochu.dmp owner(用户名) 1.重启oracle监听 cmd 中输入 services.msc 找到服务&#xff1a;OracleOraDb10g_home1TNSListener 与 OracleServiceORCL。 把两个服务启动. 若未解决…

cache 2.单机并发缓存

0.对原教程的一些见解 个人认为原教程中两点知识的引入不够友好。 首先是只读数据结构 ByteView 的引入使用是有点迷茫的&#xff0c;可能不能很好理解为什么需要ByteView。 第二是主体结构 Group的引入也疑惑。其实要是熟悉groupcache&#xff0c;那对结构Group的使用是清晰…

增强现实中的真实人/机/环与虚拟人/机/环

在增强现实中&#xff0c;真实人与虚拟人、真实机器与虚拟机器、真实环境与虚拟环境之间有着密切的关系。增强现实技术通过将真实与虚拟相结合&#xff0c;打破了传统的现实世界与虚拟世界的界限&#xff0c;创造出了一种新的体验方式。真实人、真实机器和真实环境与其对应的虚…

AI 训练框架:Pytorch TensorFLow MXNet Caffe ONNX PaddlePaddle

https://medium.com/jit-team/bridge-tools-for-machine-learning-frameworks-3eb68d6c6558

爬虫 selenium语法 (八)

目录 一、为什么使用selenium 二、selenium语法——元素定位 1.根据 id 找到对象 2.根据标签属性的属性值找到对象 3.根据Xpath语句获取对象 4.根据标签名获取对象 5.使用bs语法获取对象 6.通过链接文本获取对象 三、selenium语法——访问元素信息 1.获取属性的属性值…

第一课【习题】给应用添加通知和提醒

构造进度条模板通知&#xff0c;name字段当前需要固定配置为downloadTemplate。 给通知设置分发时间&#xff0c;需要设置showDeliveryTime为false。 OpenHarmony提供后台代理提醒功能&#xff0c;在应用退居后台或退出后&#xff0c;计时和提醒通知功能被系统后台代理接管…

重写 AppiumService 类,添加默认启动参数,并实时显示启动日志

一、前置说明 在Appium的1.6.0版本中引入了AppiumService类&#xff0c;可以很方便的通过该类来管理Appium服务器的启动和停止。经过测试&#xff0c;使用该类的实例执行关闭server时&#xff0c;并没有释放端口号&#xff0c;会导致第二次启动时失败。另外&#xff0c;使用该…

(env: Windows,mp,1.06.2308310; lib: 3.2.4) uniapp微信小程序

应公司需求&#xff0c;在特定情况下需要修改ip 在开发过程中出现的小插曲 1、第一种情况&#xff1a;重复声明 2、第二种情况&#xff1a; 应官方要求&#xff0c;需要跳转的 tabBar 页面的路径&#xff08;需在 pages.json 的 tabBar 字段定义的页面&#xff09;&#xff0…

Python---类的综合案例

1、需求分析 设计一个Game类 属性&#xff1a; 定义一个类属性top_score记录游戏的历史最高分 定义一个实例属性player_name记录当前游戏的玩家姓名 方法&#xff1a; 静态方法show_help显示游戏帮助信息 类方法show_top_score显示历史最高分 实例方法start_game开始当前…

【开源】基于Vue+SpringBoot的陕西非物质文化遗产网站

文末获取源码&#xff0c;项目编号&#xff1a; S 065 。 \color{red}{文末获取源码&#xff0c;项目编号&#xff1a;S065。} 文末获取源码&#xff0c;项目编号&#xff1a;S065。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 设计目标2.2 研究内容2.3 研究方法与…

Plonky2 = Plonk + FRI

Plonky2由Polygon Zero团队开发&#xff0c;实现了一种快速的递归SNARK&#xff0c;据其团队公开的基准测试&#xff0c;2020年&#xff0c;以太坊第一笔递归证明需要60s生成&#xff0c;而于今Plonky2在 MacBook Pro上生成只需 170 毫秒。 下面将逐步剖析Plonky2。 整体构造 …