文章目录
- 数据简介
- Dataset读取
- Step1:类别定义
- Step2:解析xml
- Step3:实现Dataset
- Step4:数据增强
- Step5:添加dataset_collate
- Step6:测试
- 小结
数据简介
-
林业病虫害防治项目用到的AI识虫数据集,该数据集提供了2183张图片,其中训练集1693张,验证集245,测试集245张。下载地址
-
图片和标签示例如下:
# 根据坐标把框画到图上
import xml.etree.ElementTree as ET
import cv2
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from PIL import Image
import osdef read_xml(xml_path):tree = ET.parse(xml_path)root = tree.getroot()boxes = []for obj in root.findall('object'):bbox = obj.find('bndbox')xmin = int(bbox.find('xmin').text)ymin = int(bbox.find('ymin').text)xmax = int(bbox.find('xmax').text)ymax = int(bbox.find('ymax').text)# Read class labelclass_label = obj.find('name').textboxes.append((xmin, ymin, xmax, ymax, class_label))return boxesdef visualize_boxes(image_path, boxes):# Read the image using OpenCVimage = cv2.imread(image_path)# Convert BGR image to RGBimage_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)# Create figure and axesfig, ax = plt.subplots(1)# Display the imageax.imshow(image_rgb)# Add bounding boxes to the imagefor box in boxes:xmin, ymin, xmax, ymax, class_label = boxrect = patches.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, linewidth=1, edgecolor='g', facecolor='none')ax.add_patch(rect)# Display class labelplt.text(xmin, ymin, class_label, color='r', fontsize=8, bbox=dict(facecolor='white', alpha=0.7))# Set the title as the file nameplt.title(os.path.splitext(os.path.basename(image_path))[0])# Show the plotplt.show()if __name__ == "__main__":xml_folder = r"D:\work\data\insects\train\annotations\xmls"image_folder = r"D:\work\data\insects\train\images"# Specify the file name of the image you want to visualizeimage_file_name = "1.jpeg"xml_file = os.path.join(xml_folder, os.path.splitext(image_file_name)[0] + ".xml")image_path = os.path.join(image_folder, image_file_name)boxes = read_xml(xml_file)visualize_boxes(image_path, boxes)
Dataset读取
继承torch.utils.Dataset类来读取数据集,在getitem函数中返回图片、框坐标、框类别,主要分为以下步骤:
Step1:类别定义
-
定义数据集的路径、类别
DATA_ROOT = r'D:\work\data\insects' CATEGORY_NAMES = ['Boerner', 'Leconte', 'Linnaeus','acuminatus', 'armandi', 'coleoptera', 'linnaeus'] # 根据类名返回对应的id def get_insect_names():insect_category2id = {}for i, item in enumerate(CATEGORY_NAMES):insect_category2id[item] = ireturn insect_category2idCATEGORY_NAME_ID = get_insect_names() NUM_CLASSES = len(CATEGORY_NAMES)
Step2:解析xml
-
解析xml文件,获取框的位置、类别
-
框坐标从xyxy改成了xywh
import xml.etree.ElementTree as ET import os import numpy as npdef read_xml(xml_path):"""解析xml文件,返回坐标和类别信息:param xml_path::return:"""tree = ET.parse(xml_path)root = tree.getroot()fname = os.path.basename(xml_path).split()[0]objs = tree.findall('object')# 存框坐标和类别gt_bbox = np.zeros((len(objs), 4), dtype=np.float32)gt_class = np.zeros((len(objs),), dtype=np.int32)difficult = np.zeros((len(objs),), dtype=np.int32)for i, obj in enumerate(root.findall('object')):bbox = obj.find('bndbox')xmin = int(bbox.find('xmin').text)ymin = int(bbox.find('ymin').text)xmax = int(bbox.find('xmax').text)ymax = int(bbox.find('ymax').text)_difficult = int(obj.find('difficult').text)cname = obj.find('name').text# 直接改成 xywh格式gt_bbox[i] = [(xmin + xmax) / 2.0, (ymin + ymax) / 2.0, ymax - ymin + 1., ymax - ymin + 1.]gt_class[i] = CATEGORY_NAME_ID[cname]difficult[i] = _difficultrecord = {'fname': fname,'gt_bbox': gt_bbox,'gt_class': gt_class,'difficult': difficult}return record
Step3:实现Dataset
-
继承torch.nn.Dataset,定义InsectDataset类,包含 init/getitem/len和get_annotations四个方法
- init():定义数据集路径、数据增强等参数
- **len():**数据集数量
- get_annotations():将Step2中解析出来的xml结果包裹起来,获取所有框
- get_item():读取records,根据idx拿到对应图片的框(同时将框改成相对坐标)
returns: image, gt_boxes, labels
import os
import numpy as np
import torch
from PIL import Image
from torch.utils.data import Dataset, DataLoaderclass InsectDataset(Dataset):""":returns img, gt_boxes, labelsimg: tensorgt_boxes: list 框的相对位置labels: list 框的标签"""def __init__(self, datadir, mode='train', transforms=None):super(InsectDataset, self).__init__()self.datadir = os.path.join(datadir, mode)self.records = self.get_annotations()self.transforms = transformsdef __getitem__(self, idx):record = self.records[idx]gt_boxes = record['gt_bbox']labels = record['gt_class']image = np.array(Image.open(record['im_file']))w = image.shape[0]h = image.shape[1]# gt_bbox 用相对值gt_boxes[:, 0] = gt_boxes[:, 0] / float(w)gt_boxes[:, 1] = gt_boxes[:, 1] / float(h)gt_boxes[:, 2] = gt_boxes[:, 2] / float(w)gt_boxes[:, 3] = gt_boxes[:, 3] / float(h)if self.transforms:transformed = self.transforms(image=image, bboxes=gt_boxes, class_labels=labels)image = transformed['image']gt_boxes = np.array(transformed['bboxes'])labels = np.array(transformed['class_labels'])image = image.transpose((2,1,0)) # h,w,c -> c,w,hreturn image, gt_boxes, labelsdef __len__(self):return len(self.records)def get_annotations(self):"""从xml目录下面读取所有文件的标注信息:param cname2cid::param datadir::return: record:[{im_file: arraygt_boxes: arraygt_classes: arraydifficult: array}]"""datadir = self.datadirfilenames = os.listdir(os.path.join(datadir, 'annotations', 'xmls'))records = []for fname in filenames:# 拿到文件名fid = fname.split('.')[0]fpath = os.path.join(datadir, 'annotations', 'xmls', fname)img_file = os.path.join(datadir, 'images', fid + '.jpeg')# 解析xml文件record = read_xml(fpath)record['im_file'] = img_file # 把图片路径加上records.append(record)return records
Step4:数据增强
-
这里采用albumentations进行数据增强,参考官网的目标检测数据增强教程即可,这里加入normalize、resize以及一些常见的数据增强策略,后续完善
import albumentations as Atransforms = A.Compose([# A.RandomCrop(width=450, height=450),A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), max_pixel_value=255.0),A.Resize(width=640, height=640),A.HorizontalFlip(p=0.5),A.RandomBrightnessContrast(p=0.2), ], bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
-
在调用的时候注意框坐标的format,这里统一用yolo格式(xywh相对坐标)
if self.transforms:transformed = self.transforms(image=image, bboxes=gt_boxes, class_labels=labels)image = transformed['image']gt_boxes = np.array(transformed['bboxes'])labels = np.array(transformed['class_labels'])
Step5:添加dataset_collate
由于不同图片的框数量不同,在用dataloader加载数据的时候,getitem的返回值shape不同会报错,因此用一个list包裹起来
def dataset_collate(batch):"""用list包一下 img, bboxes, labels:param batch::return:"""images = []bboxes = []labels = []for img, box, label in batch:images.append(img)bboxes.append(box)labels.append(label)images = torch.tensor(np.array(images))return images, bboxes, labels
Step6:测试
- 测试Dataset的getitem函数以及用Dataloader加载后能否正常读取
if __name__ == '__main__':dataset = InsectDataset(DATA_ROOT, transforms=transforms)print(dataset.__len__())print('image_shape: ', dataset.__getitem__(1)[0].shape)batch_size = 4print()train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=0,collate_fn=dataset_collate)for inputs in train_loader:print('img_shape:', inputs[0].shape)print('gt_boxes:', inputs[1])print('gt_labels:', inputs[2])
小结
-
读取voc格式的数据集主要以下三个点需要注意一下
- 解析xml文件,获取关键的框坐标和类别信息,并非所有信息都有作用
- 弄清楚数据集格式是xyxy还是xywh,是相对坐标还是绝对坐标(既然要做数据增强变换图像大小,那相对坐标更方便)
- 用Dataloader读取的时候每个图片的框数量不一样,加上dataset_collate用list包裹一下。
-
把画框的代码单独放在一个文件里,但其中read_xml的方法跟dataset中类似,框架搭好之后进一步优化一下
-
如果是anchor base的模型后续还需要根据锚框来处理得到每个锚框的objectness和坐标