[GPT]Andrej Karpathy微软Build大会GPT演讲(下)--该如何使用GPT助手

该如何使用GPT助手--将GPT助手模型应用于问题

现在我要换个方向,让我们看看如何最好地将 GPT 助手模型应用于您的问题。

现在我想在一个具体示例的场景里展示。让我们在这里使用一个具体示例。

假设你正在写一篇文章或一篇博客文章,你打算在最后写这句话。

加州的人口是阿拉斯加的 53 倍。因此出于某种原因,您想比较这两个州的人口。

想想我们自己丰富的内心独白和工具的使用,以及在你的大脑中实际进行了多少计算工作来生成这最后一句话。

这可能是你大脑中的样子:

好的。对于下一步,让我写博客——在我的博客中,让我比较这两个人群。

好的。首先,我显然需要得到这两个人群。

现在我知道我可能根本不了解这些人群。

我有点,比如,意识到我知道或不知道我的自我知识;正确的?

我去了——我做了一些工具的使用,然后我去了维基百科,我查找了加利福尼亚的人口和阿拉斯加的人口。

现在我知道我应该把两者分开。

同样,我知道用 39.2 除以 0.74 不太可能成功。

那不是我脑子里能做的事情。

因此,我将依靠计算器。

我打算用一个计算器,把它打进去,看看输出大约是 53。

然后也许我会在我的大脑中做一些反思和理智检查。

那么53有意义吗?

好吧,这是相当大的一部分,但是加利福尼亚是人口最多的州,也许这看起来还可以。

这样我就有了我可能需要的所有信息,现在我开始写作的创造性部分了。

我可能会开始写类似,加利福尼亚有 53 倍之类的东西,然后我对自己说,这实际上是非常尴尬的措辞,让我删除它,然后再试一次。

在我写作的时候,我有一个独立的过程,几乎是在检查我正在写的东西,并判断它是否好看。

然后也许我删除了,也许我重新构造了它,然后也许我对结果感到满意。

基本上,长话短说,当你创造这样的句子时,你的内心独白会发生很多事情。

这里Andrej从一个具体的例子开始讲起,首先假设我们需要写一篇博客,在博客的最后希望写一句话“加州的人口是阿拉斯加的53倍”,为了能够给出这个结论,我们的大脑中需要进行很多前置工作,如下图所示,先想一下我得知道他们各自的人口是多少,但是这不在我的脑海中,因此我需要去检索。然后通过wiki我知道了加州有39.2M的人,阿拉斯加有0.74M的人,然后我需要计算一下两者的除法,但我没法心算,所以我用计算器算了一下,得到39.2/0.74=53. 快速的在脑海中确认一下,这个数值是否合理,加州人确实比阿拉斯加多很多,感觉应该合理,于是我确信加州的人是阿拉斯加的53倍,并写到我的博客中,在写的过程中可能还会觉得辞藻不够美妙,反复修改一下。 所以为了达成这个目标,我的脑海中需要经过很多很多的事项才可以。

但是,当我们在其上训练 GPT 时,这样的句子是什么样的?

从 GPT 的角度来看,这只是一个标记序列。因此,当 GPT 读取或生成这些标记时,它只会进行分块、分块、分块,每个块对每个标记的计算工作量大致相同。

这些 Transformer 都不是很浅的网络,它们有大约 80 层的推理,但 80 仍然不算太多。

这个Transformer将尽最大努力模仿...但是,当然,这里的过程看起来与你采用的过程非常非常不同。

特别是,在我们最终的人工制品中,在创建并最终提供给 LLM 的数据集中,所有内部对话都被完全剥离(只给出最后结果作为训练数据)。

并且与您不同的是,GPT 将查看每个标记并花费相同的算力去计算它们中的每一个,实际上,你不能指望它对每个标记做太多的工作。

基本上,这些Transformer就像标记模拟器。它们不知道自己不知道什么,它们只是模仿(预测)下一个标记;它们不知道自己擅长什么,不擅长什么,只是尽力模仿(预测)下一个标记。

它们不反映在循环中,它们不检查任何东西,它们在默认情况下不纠正它们的错误,它们只是对标记序列进行采样。

它们的头脑中没有单独的内心独白流,它们正在评估正在发生的事情。

现在它们确实有某种认知优势,我想说,那就是它们实际上拥有大量基于事实的知识,涵盖大量领域,因为它们有几百亿个参数,这是大量存储和大量事实。

而且我认为,它们也有相对大而完美的工作记忆。

因此,任何适合上下文窗口的内容都可以通过其内部自注意机制立即供Transformer使用,它有点像完美的记忆。它的大小是有限的,但Transformer可以非常直接地访问它,它可以无损地记住其上下文窗口内的任何内容。

这就是我比较这两者的方式。

我之提出所有这些,是因为我认为在很大程度上,提示只是弥补了这两种架构之间的这种认知差异。就像我们人类大脑和 LLM 大脑(的比较),你可以这么看。

这样的一个过程其实就是一连串的token序列。在GPT处理时,他只会一块一块又一块的逐个去处理这些token,花差不多的时间去计算下一个词是什么,他并不像我们人类一下具有丰富的心理活动。他不知道他知道什么,他只是去模拟下一个词。他不知道什么好什么坏,他只是去模拟下一个词。他不会反思,不会检查,不会修正自己的问题。他的优势在于具备大量的基础知识,涵盖了大量的领域,保存在他的几百亿的参数中,并且对于他们的context windows可以完美处理。

人们发现有一件事,在实践中效果很好。

特别是如果您的任务需要推理,您不能指望Transformer对每个标记进行太多推理,因此

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/263787.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

上班必备——项目部署环境

大家都知道,互联网行业有很多的岗位,前端,后端,产品,测试,ui等。 ui,产品和测试的同事在前端开发的过程中,都会时刻关注着进度,是要看页面效果的,这个时候怎…

java+springboot+ssm学生社团管理系统76c2e

本系统包括前台和后台两个部分。前台主要是展示社团列表、社团风采、社团活动、新闻列表等,前台登录后进入个人中心,在个人中心能申请加入社团、查看参加的社团活动等;后台为管理员与社团负责人使用,应用于对社团的管理及内容发布…

软件无线电SDR-频谱采集python实现

sdr做的频谱采集,保存的500张频谱图,能看出来是什么东西吗?

kafka入门(四):消费者

消费者 (Consumer ) 消费者 订阅 Kafka 中的主题 (Topic) ,并 拉取消息。 消费者群组( Consumer Group) 每一个消费者都有一个对应的 消费者群组。 一个群组里的消费者订阅的是同一个主题,每个消费者接收主题的一部分分区的消息…

Minio保姆级教程

转载自:www.javaman.cn Minio服务器搭建和整合 1、centos安装minio 1.1、创建安装目录 mkdir -p /home/minio1.2、在线下载minio #进入目录 cd /home/minio #下载 wget https://dl.minio.io/server/minio/release/linux-amd64/minio1.3、minio配置 1.3.1、添加…

Shell数组函数:函数

一、概述 概念: 函数是一段完成特定功能的代码片段(块)在shell中定义了函数,就可以使代码模块化,使于复用代码注意函数必须先定义才可以使用。 重点: 传参 $1,$2局部变量 local返回值 return 即$? 二、定…

AWS攻略——Peering连接VPC

文章目录 创建IP/CIDR不覆盖的VPC创建VPC创建子网创建密钥对创建EC2 创建Peering接受Peering邀请修改各个VPC的路由表修改美东us-east-1 pulic subnet的路由修改悉尼ap-southeast-2路由 测试知识点 我们回顾下《AWS攻略——VPC初识》中的知识: 一个VPC只能设置在一…

linux7安装python3.12.1教程

1.下载tar.gz包 地址:Python Release Python 3.12.1 | Python.org 2.上传包到linux服并解压 cd /home/local/ ll tar -zxvf Python-3.12.1.tgz 3.安装编译python所需环境 yum install -y gcc yum install -y zlib* yum -y install zlib-devel bzip2-devel opens…

读书笔记-《数据结构与算法》-摘要4[插入排序]

插入排序 核心:通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描(对于单向链表则只能从前往后遍历),找到相应位置并插入。实现上通常使用in-place排序(需用到O(1)的额外空间) 从第一个元素开始,该元素可…

【Unity动画】Avatar Mask

创建 Avatar Mask可以设置那一部分骨骼运动和不运动 然后放在状态机里面的层中来混合 【后续完善】

leetcode 100.相同的树

涉及到递归,最好多画图理解,希望对你们有帮助 100.相同的树 题目 给你两棵二叉树的根节点 p 和 q ,编写一个函数来检验这两棵树是否相同。 如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。 题目链接…

NAND闪存价格暴涨:512GB芯片翻倍,256GB涨幅达55%

此前,根据Trendforce的信息,今年第四季度NAND的合约价预计上涨8-13%,其中Wafer上涨13-18%。 根据DRAMeXchange最新的数据表明,之前预测的数据还是太保守了,过去一年Wafer NAND价格如下图: DRAM/NAND价格近几…