IBM Qiskit量子机器学习速成(六)

量子卷积神经网络

卷积和池化:卷积神经网络的必备成分

卷积神经网络被广泛应用于图像和音频的识别当中,关键在于“卷积”操作赋予神经网络统筹学习数据的能力。

执行卷积操作需要输入数据与卷积核,卷积核首先与输入数据左上角对齐,随后逐个计算对应位置处两个数字之积。当对卷积核中所有的元素均执行该乘积操作后,将结果全部加起来作为新的输出。在下图中,我们可以看到卷积核最多只能输出9个数据(就像游戏2048一样)。

在这里插入图片描述

下面的动态图能更直观的展现这一过程

在这里插入图片描述

每一次池化操作都需要输入数据和池化核,池化核会根据某一要求挑选出符合条件的元素作为代表。

在这里插入图片描述

如果我们执行最大池化,那么池化核会首先与输入数据左上角对齐,挑选出范围内最大的元素作为输出。如果我们执行平均池化,那么池化核会首先与输入数据左上角对齐,挑选出范围内所有元素的平均值作为输出。

一般而言,一个卷积神经网络会间隔包含卷积层和池化层,多次重复后,再加上一个全连接层(Fully Connected),就能得到最终数据了。我们一般使用经过卷积神经网络处理后的图片或音频进行机器学习,这样学习的参数更少,速度更快,同时保留了原先数据的特点。

在这里插入图片描述

量子卷积与量子池化

在量子电路中,我们不能随心所欲的创建和使用数据。在经典卷积神经网络中,输出和输入或许是分离存储的,但是在量子电路中,我们只能一直使用若干条量子电路,不能在执行过程中将其切开。

在这里插入图片描述

根据相关论文结果,量子中的卷积操作如下

在这里插入图片描述

最一般的量子卷积包含了15个参数,但是过多的参数会严重延长训练时间,出于教学目的,我们使用这一简化的卷积操作。

根据相关论文结果,量子中的池化操作如下

在这里插入图片描述

我们像经典池化操作一样抛弃一些数据,这里我们抛弃位于上方的量子比特,保留下方的量子比特。

使用Qiskit将卷积和池化写成代码形式

def conv_circuit(params):target = QuantumCircuit(2)target.rz(-np.pi / 2, 1)target.cx(1, 0)target.rz(params[0], 0)target.ry(params[1], 1)target.cx(0, 1)target.ry(params[2], 1)target.cx(1, 0)target.rz(np.pi / 2, 0)return target
def pool_circuit(params):target = QuantumCircuit(2)target.rz(-np.pi / 2, 1)target.cx(1, 0)target.rz(params[0], 0)target.ry(params[1], 1)target.cx(0, 1)target.ry(params[2], 1)return target

而在一个大型量子电路中,我们不能只在某两个量子比特上使用卷积和池化,所以我们需要编写一套适用于大型量子电路的卷积和池化函数

def conv_layer(num_qubits, param_prefix):qc = QuantumCircuit(num_qubits, name="Convolutional Layer")qubits = list(range(num_qubits))param_index = 0params = ParameterVector(param_prefix, length=num_qubits * 3)for q1, q2 in zip(qubits[0::2], qubits[1::2]):qc = qc.compose(conv_circuit(params[param_index : (param_index + 3)]), [q1, q2])qc.barrier()param_index += 3for q1, q2 in zip(qubits[1::2], qubits[2::2] + [0]):qc = qc.compose(conv_circuit(params[param_index : (param_index + 3)]), [q1, q2])qc.barrier()param_index += 3qc_inst = qc.to_instruction()qc = QuantumCircuit(num_qubits)qc.append(qc_inst, qubits)return qc

对于四个量子比特的电路,结果 如下

在这里插入图片描述

容易看出该函数的意义即对电路中任意两个不同量子比特施加卷积操作。

同样地,我们也可以定义适用于大型量子电路的池化函数

def pool_layer(sources, sinks, param_prefix):num_qubits = len(sources) + len(sinks)qc = QuantumCircuit(num_qubits, name="Pooling Layer")param_index = 0params = ParameterVector(param_prefix, length=num_qubits // 2 * 3)for source, sink in zip(sources, sinks):qc = qc.compose(pool_circuit(params[param_index : (param_index + 3)]), [source, sink])qc.barrier()param_index += 3qc_inst = qc.to_instruction()qc = QuantumCircuit(num_qubits)qc.append(qc_inst, range(num_qubits))return qc

在这里插入图片描述

可以看出,池化操作先把整个电路分成若干个量子比特对,对与对之间相互不干扰,每个对内再执行池化操作。

实战演练:水平线与竖直线的分类

首先我们导入本次用到的所有库

import json
import matplotlib.pyplot as plt
import numpy as np
from IPython.display import clear_output
from qiskit import QuantumCircuit
from qiskit.circuit import ParameterVector
from qiskit.circuit.library import ZFeatureMap
from qiskit.quantum_info import SparsePauliOp
from qiskit_algorithms.optimizers import COBYLA
from qiskit_algorithms.utils import algorithm_globals
from qiskit_machine_learning.algorithms.classifiers import NeuralNetworkClassifier
from qiskit_machine_learning.neural_networks import EstimatorQNN
from sklearn.model_selection import train_test_splitalgorithm_globals.random_seed = 12345

进一步,手动生成数据。我们会编写函数生成大量包含水平线或竖直线的图片。

def generate_dataset(num_images):images = []labels = []hor_array = np.zeros((6, 8))ver_array = np.zeros((4, 8))j = 0for i in range(0, 7):if i != 3:hor_array[j][i] = np.pi / 2hor_array[j][i + 1] = np.pi / 2j += 1j = 0for i in range(0, 4):ver_array[j][i] = np.pi / 2ver_array[j][i + 4] = np.pi / 2j += 1for n in range(num_images):rng = algorithm_globals.random.integers(0, 2)if rng == 0:labels.append(-1)random_image = algorithm_globals.random.integers(0, 6)images.append(np.array(hor_array[random_image]))elif rng == 1:labels.append(1)random_image = algorithm_globals.random.integers(0, 4)images.append(np.array(ver_array[random_image]))# Create noisefor i in range(8):if images[-1][i] == 0:images[-1][i] = algorithm_globals.random.uniform(0, np.pi / 4)return images, labels

进行训练集和测试集分割

images, labels = generate_dataset(50)train_images, test_images, train_labels, test_labels = train_test_split(images, labels, test_size=0.3
)

为了将经典数据编码到量子电路中,我们还是需要一个特征映射。这里我们使用ZFeatureMao而不是ZZFeatureMap。

feature_map = ZFeatureMap(8)
feature_map.decompose().draw("mpl")

组合卷积层和池化层,创建量子卷积神经网络

feature_map = ZFeatureMap(8)ansatz = QuantumCircuit(8, name="Ansatz")# First Convolutional Layer
ansatz.compose(conv_layer(8, "с1"), list(range(8)), inplace=True)# First Pooling Layer
ansatz.compose(pool_layer([0, 1, 2, 3], [4, 5, 6, 7], "p1"), list(range(8)), inplace=True)# Second Convolutional Layer
ansatz.compose(conv_layer(4, "c2"), list(range(4, 8)), inplace=True)# Second Pooling Layer
ansatz.compose(pool_layer([0, 1], [2, 3], "p2"), list(range(4, 8)), inplace=True)# Third Convolutional Layer
ansatz.compose(conv_layer(2, "c3"), list(range(6, 8)), inplace=True)# Third Pooling Layer
ansatz.compose(pool_layer([0], [1], "p3"), list(range(6, 8)), inplace=True)# Combining the feature map and ansatz
circuit = QuantumCircuit(8)
circuit.compose(feature_map, range(8), inplace=True)
circuit.compose(ansatz, range(8), inplace=True)observable = SparsePauliOp.from_list([("Z" + "I" * 7, 1)])# we decompose the circuit for the QNN to avoid additional data copying
qnn = EstimatorQNN(circuit=circuit.decompose(),observables=observable,input_params=feature_map.parameters,weight_params=ansatz.parameters,
)

根据量子卷积神经网络创建分类器

classifier = NeuralNetworkClassifier(qnn,optimizer=COBYLA(maxiter=200),  # Set max iterations here
)

拟合数据,测试结果

x = np.asarray(train_images)
y = np.asarray(train_labels)
classifier.fit(x, y)y_predict = classifier.predict(test_images)
x = np.asarray(test_images)
y = np.asarray(test_labels)
print(f"Accuracy from the test data : {np.round(100 * classifier.score(x, y), 2)}%")

如果将结果可视化的话(详见Qiskit量子卷积神经网络),应如下图

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/264395.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Xcode doesn’t support iOS 16.6

xocde版本低,手动放入16.6的依赖文件 https://gitee.com/qiu1993/iOSDeviceSupport/blob/master/iOS16/16.6.zip 路径 /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/DeviceSupport

加载离线镜像包:在线镜像离线为tar包、tar离线镜像包加载并根据imageId打tag

第一步:在线环境压缩离线镜像: 需要两个文件,第一个是脚本文件image_offline_load.sh脚本,第二个是image_list.txt 按行 存放需要离线的镜像名称 ./image_offline_load.sh save image_list.txt output.tar第二步:在离…

【HarmonyOS开发】控件开发过程中,知识点记录

1、问题记录及解决方案 1.1 资源(Icon&i18n)问题 控件:只有一个JS文件,不会将任何资源型文件(图片、字体、默认文字等)打包到SO中。因此,当我们开发控件时,需要将需要使用到的资…

Java项目-瑞吉外卖Day4

实现文件的上传下载: 前端代码: 对文件的操作就是对流的操作。 上传文件的后端代码,需要注意MultipartFile的名字必须与前端相对: 为文件存储位置进行动态设置,配置application.xml 在CommonController中设置属性读…

【电路笔记】-压敏电阻

压敏电阻 文章目录 压敏电阻1、概述2、交流波形瞬变3、抗静电能力4、特性曲线5、压敏电阻电容值6、金属氧化物压敏电阻7、压敏电阻应用8、总结 压敏电阻是一种无源两端固态半导体器件,用于为电气和电子电路提供保护。 1、概述 与提供过电流保护的保险丝或断路器不同…

Shell 常用命令详解-上

Shell 常用命令详解-上 1.目录查阅相关命令2.文件操作相关命令 1.目录查阅相关命令 ll 命令 命令描述:ll命令用于显示指定工作目录下的内容。 命令格式:ll [参数] [目录名]。 参数说明: 参数说明-a显示所有文件及目录(包括隐藏文…

软件工程考试复习

第一章、软件工程概述 🌟软件程序数据文档(考点) 🌟计算机程序及其说明程序的各种文档称为 ( 文件 ) 。计算任务的处理对象和处理规则的描述称为 ( 程序 )。有关计算机程序功能、…

安卓上比iOS快捷指令更强大的工具——MacroDroid

使用 MacroDroid (Android) 自动化您的日常生活——一个简单的自动化应用程序,用于在 Android 上自动执行任务以及如何在其上自动执行任务。 iOS 和 Android 之间的区别? iOS和Android是两种不同的移动操作系统,iOS由苹果公司开发,于2007年…

Threejs项目实战之二:产品三维爆炸图效果展示

目录 最终效果1. 实现原理2. 创建项目3. 编写代码 最终效果 今天我们来实现如何使用ThreeJS实现产品的三维爆炸图分解与组合的效果,先看下最终项目完成后的效果展示动画 1. 实现原理 要实现这种爆炸图的分解与组合效果,其实原理很简单,就…

Android:java.lang.RuntimeException: Unable to start activity ComponentInfo

java.lang.RuntimeException: Unable to start activity ComponentInfo 报错描述: 在导入别人项目运行时出现了这个报错: java.lang.RuntimeException: Unable to start activity ComponentInfo{com.example.news/com.example.activity.DetailNews}: ja…

react之项目打包,本地预览,路由懒加载,打包体积分析以及如何配置CDN

react之项目打包,本地预览,路由懒加载,打包体积分析以及如何配置CDN 一、项目打包二、项目本地预览三、路由懒加载四、打包体积分析五、配置CDN 一、项目打包 执行命令 npm run build根目录下生成的build文件夹 及时打包后的文件 二、项目本地预览 1.全局安装本地服务包 npm…

python zblog API实现类似XMLRPC/发布文章

我发现python对Zblog的XML发布并不友好,虽然也有对应的模块,但是远远没有XPCRPC更直接方便,但是使用xmlRpc是直接给发布文章带来了不小的便利,但是对系统也并不友好,但是zblog也开放了Api,但是干部子弟不乐…