DIP——添加运动模糊与滤波

1.运动模糊
为了模拟图像退化的过程,在这里创建了一个用于模拟运动模糊的点扩散函数,具体模糊的方向取决于输入的motion_angle。如果运动方向接近水平,则模糊效果近似水平,如果运动方向接近垂直,则模糊效果近似垂直。具体操作如下。首先创建二维数组PSF,并将其所有元素初始化为零,作为点扩散函数的初始值。之后计算图像的中心位置。然后,计算运动方向的斜率的正切值以及余切值。根据运动方向的斜率的正切值以及余切值去判断运动方向。如果斜率的正切值小于等于1,表示运动方向接近水平,所采取的操作是在点扩散函数的相应位置设置值为1,形成一条近似水平的模糊效果。这个相应位置的计算方式是中心加上偏移量。垂直方向同理。运动模糊这一块的代码具体如下。

def motion_process(image_size, motion_angle):# 创建一个大小为image_size的二维数组PSF,并将其所有元素初始化为零,作为点扩散函数的初始值。PSF = np.zeros(image_size)print(image_size)# 计算图像的中心位置,由于数组索引是从0开始的,所以需要减1。center_position = (image_size[0] - 1) / 2print(center_position)# 计算运动方向的斜率的正切值。这里的motion_angle是以度为单位的运动方向角度。slope_tan = math.tan(motion_angle * math.pi/ 180)# 计算斜率的余切值。slope_cot = 1/slope_tan# 如果斜率的正切值小于等于1,表示运动方向接近水平。if slope_tan <=1:for i in range(15):# 计算相对于中心位置的水平偏移。round函数用于将浮点数四舍五入为整数。offset = round(i * slope_tan) #((center_position-i)*slope_tan)# 在点扩散函数的相应位置设置值为1,形成一条近似水平的模糊效果。PSF [int (center_position + offset), int(center_position - offset)] = 1# 将点扩散函数进行归一化,确保其总和为1。return PSF/PSF.sum() #对点扩散函数进行归一化亮度# 如果斜率的正切值大于1,表示运动方向接近垂直。else:for i in range(15):# 计算相对于中心位置的垂直偏移。offset = round(i * slope_cot)# :在点扩散函数的相应位置设置值为1,形成一条近似垂直的模糊效果。PSF[int(center_position - offset),int(center_position + offset)] = 1#     将点扩散函数进行归一化,确保其总和为1。return PSF / PSF.sum()

之后,对点扩散函数(PSF)进行二维傅里叶变换。这里加上e是为了避免除零错误。之后 将输入图像的傅里叶变换与点扩散函数的傅里叶变换进行逐元素相乘,在将结果进行逆傅里叶变换,得到模糊处理后的图像。最后用fftshift将频谱移到图像中心,然后取绝对值,得到最终的模糊图像。
总结一下,第一步是为了得到点扩散函数,可以理解为一个模糊的模板,这一步,是在进行时域卷积,频域乘积,对输入图像和模糊模板进行卷积,得到输出。
得到模糊图像的代码如下。

def make_blurred(input, PSF, eps):# 对输入图像进行二维傅里叶变换。input_fft = fft.fft2(input)  # 进行二维数组的傅里叶变换# 对点扩散函数(PSF)进行二维傅里叶变换,并添加一个小的常数eps以避免除零错误。这是在频域进行卷积操作的准备步骤。PSF_fft = fft.fft2(PSF) + eps# input_fft * PSF_fft, 将输入图像的傅里叶变换与点扩散函数的傅里叶变换进行逐元素相乘,这相当于在时域中进行卷积。# 之后对相乘结果进行逆傅里叶变换,得到模糊处理后的图像。blurred = fft.ifft2(input_fft * PSF_fft)# 用fftshift将频谱移到图像中心,然后取绝对值,得到最终的模糊图像。blurred = np.abs(fft.fftshift(blurred))return blurred

2.逆滤波
对图像和点扩散函数(PSF)分别进行傅里叶变换,同时将将PSF的频域表示进行平移,将其中心移到图像中心。这是为了避免逆滤波后的图像进行旋转。简单而言,就是将频域中的输入图像和PSF的傅里叶变换进行逐元素相除,然后进行逆傅里叶变换,就实现了逆滤波操作。具体代码如下。

def inverse (input, PSF, eps):input_fft = fft.fft2(input) # 进行二维数组的傅里叶变换,将图像转换到频域PSF_fft =fft.fft2(PSF)+ eps # 噪声功率,这是已知的,考虑epsilon# 为避免逆滤波后的图像进行旋转,将PSF的中心移到图像中心PSF_fft_shifted = fft.fftshift(PSF_fft)  # 将PSF的中心移到图像中心# 对频域中的输入图像和PSF的傅里叶变换进行逐元素相除,然后进行逆傅里叶变换。这一步实现了逆滤波操作。result = fft.fft2(input_fft / PSF_fft_shifted)# 对逆滤波得到的频域结果进行频谱中心平移,取其绝对值,得到逆滤波后的时域图像。result = np.abs(fft.fftshift(result))return result

3.维纳滤波
同理,对图像和点扩散函数(PSF)分别进行傅里叶变换。之后,计算维纳滤波的频域滤波器。将输入图像的傅里叶变换与维纳滤波器的傅里叶变换逐元素相乘,然后进行逆傅里叶变换,得到维纳滤波后的时域结果。具体代码如下。

def wiener(input,PSF,eps,K=0.01): # 维纳滤波,K=0.01# 对输入图像进行二维傅里叶变换,将图像转换到频域。input_fft = fft.fft2(input)# 点扩散函数(PSF)进行傅里叶变换,同时考虑了噪声功率 eps。这一步是为了在频域中进行维纳滤波操作的准备。PSF_fft = fft.fft2(PSF) + eps# 计算维纳滤波的频域滤波器。np.conj()是复共轭操作,这里计算的是维纳滤波器的分母,其中 K 是维纳滤波的参数,用于控制噪声增强的程度。PSF_fft_1 = np.conj(PSF_fft) /(np.abs(PSF_fft)** 2 + K)# 将输入图像的傅里叶变换与维纳滤波器的傅里叶变换逐元素相乘,然后进行逆傅里叶变换,得到维纳滤波后的时域结果。result = fft.ifft2(input_fft * PSF_fft_1)# 将维纳滤波后的频域结果进行频谱中心平移,取其绝对值,得到维纳滤波后的时域图像。result = np.abs(fft.fftshift(result))return result

4.函数调用与绘图
这块比较简单,直接附上代码

image = cv2.imread('R.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
img_h =image.shape[0]
img_w =image.shape[1]
plt.figure(1)
plt.rcParams['font.sans-serif'] = ['SimHei']  # 选择一个包含中文字符的字体
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.xlabel("原始图像")
plt.gray()
plt.imshow(image) #显示原图像
plt.figure(2)
plt.gray()# 进行运动模糊处理
PSF = motion_process((img_h, img_w), 60)
blurred = np.abs(make_blurred(image, PSF, 1e-3))
plt.subplot(231)
plt.xlabel(" 进行模糊 ")
plt.imshow(blurred)
result = inverse(blurred, PSF, 1e-3)
# 逆滤波,对图像进行滤波处理
result = np.flipud(result)  
result = np.fliplr(result)
plt.subplot(232)
plt.xlabel("对进行模糊的图像进行逆滤波")
plt.imshow(result)result = wiener(blurred, PSF, 1e-3)  # 维纳滤波
plt.subplot(233)
plt.xlabel("对模糊后的图像进行维纳滤波(k=0.01)")
plt.imshow(result)# 在模糊图像上进一步添加呈正态分布的噪声
blurred_noisy = blurred + 0.1 * blurred.std()*\np.random.standard_normal(blurred.shape)  # 添加噪声,standard_normal# 产生随机的函数
plt.subplot(234)
plt.xlabel("在模糊图像上引入噪声")
plt.imshow(blurred_noisy)  # 显示添加噪声且运动模糊的图像result=inverse(blurred_noisyPSF,0.1+1e-3) # 对添加噪声的图像进行逆滤波
plt.subplot(235)
plt.xlabel("对模糊和加噪的图片进行逆滤波")
plt.imshow(result)
result = wiener(blurred_noisy, PSF,0.1 + 1e-3)  # 对添加噪声的图像进行维纳滤波
plt.subplot(236)
plt.xlabel("对模糊和加噪的图片进行维纳滤波(k=0.01) ")
plt.imshow(result)
plt.tight_layout()
plt.show()

5.运行结果
在这里插入图片描述
在这里插入图片描述
6.总结
本次实验对原来的图像进行运动模糊后,分别采用逆滤波和维纳滤波进行对图像的恢复。之后在模糊图像的基础上进一步添加呈标准正态分布的噪声。再次,分别采用逆滤波和维纳滤波进行对图像的恢复。但是从实验结果来看,还是存在一定的振铃效应。
因为开头要导入一些必要的库。完整代码如下。

import matplotlib.pyplot as plt
import numpy as np
from numpy import fft
import math
import cv2# 对退化过程进行建模
def motion_process(image_size, motion_angle):# 创建一个大小为image_size的二维数组PSF,并将其所有元素初始化为零,作为点扩散函数的初始值。PSF = np.zeros(image_size)print(image_size)# 计算图像的中心位置,由于数组索引是从0开始的,所以需要减1。center_position = (image_size[0] - 1) / 2print(center_position)# 计算运动方向的斜率的正切值。这里的motion_angle是以度为单位的运动方向角度。slope_tan = math.tan(motion_angle * math.pi/ 180)# 计算斜率的余切值。slope_cot = 1/slope_tan# 如果斜率的正切值小于等于1,表示运动方向接近水平。if slope_tan <=1:for i in range(15):# 计算相对于中心位置的水平偏移。round函数用于将浮点数四舍五入为整数。offset = round(i * slope_tan) #((center_position-i)*slope_tan)# 在点扩散函数的相应位置设置值为1,形成一条近似水平的模糊效果。PSF [int (center_position + offset), int(center_position - offset)] = 1# 将点扩散函数进行归一化,确保其总和为1。return PSF/PSF.sum() #对点扩散函数进行归一化亮度# 如果斜率的正切值大于1,表示运动方向接近垂直。else:for i in range(15):# 计算相对于中心位置的垂直偏移。offset = round(i * slope_cot)# :在点扩散函数的相应位置设置值为1,形成一条近似垂直的模糊效果。PSF[int(center_position - offset),int(center_position + offset)] = 1#     将点扩散函数进行归一化,确保其总和为1。return PSF / PSF.sum()#
def make_blurred(input, PSF, eps):# 对输入图像进行二维傅里叶变换。input_fft = fft.fft2(input)  # 进行二维数组的傅里叶变换# 对点扩散函数(PSF)进行二维傅里叶变换,并添加一个小的常数eps以避免除零错误。这是在频域进行卷积操作的准备步骤。PSF_fft = fft.fft2(PSF) + eps# input_fft * PSF_fft, 将输入图像的傅里叶变换与点扩散函数的傅里叶变换进行逐元素相乘,这相当于在时域中进行卷积。# 之后对相乘结果进行逆傅里叶变换,得到模糊处理后的图像。blurred = fft.ifft2(input_fft * PSF_fft)# 用fftshift将频谱移到图像中心,然后取绝对值,得到最终的模糊图像。blurred = np.abs(fft.fftshift(blurred))return blurred# 逆滤波的目标是尽可能地从经过模糊和添加噪声的图像中恢复原始图像
# 逆滤波
def inverse (input, PSF, eps):input_fft = fft.fft2(input) # 进行二维数组的傅里叶变换,将图像转换到频域PSF_fft =fft.fft2(PSF)+ eps # 噪声功率,这是已知的,考虑epsilon# 为避免逆滤波后的图像进行旋转,将PSF的中心移到图像中心PSF_fft_shifted = fft.fftshift(PSF_fft)  # 将PSF的中心移到图像中心# 对频域中的输入图像和PSF的傅里叶变换进行逐元素相除,然后进行逆傅里叶变换。这一步实现了逆滤波操作。result = fft.fft2(input_fft / PSF_fft_shifted)# 对逆滤波得到的频域结果进行频谱中心平移,取其绝对值,得到逆滤波后的时域图像。result = np.abs(fft.fftshift(result))return result
def wiener(input,PSF,eps,K=0.01): # 维纳滤波,K=0.01# 对输入图像进行二维傅里叶变换,将图像转换到频域。input_fft = fft.fft2(input)# 点扩散函数(PSF)进行傅里叶变换,同时考虑了噪声功率 eps。这一步是为了在频域中进行维纳滤波操作的准备。PSF_fft = fft.fft2(PSF) + eps# 计算维纳滤波的频域滤波器。np.conj()是复共轭操作,这里计算的是维纳滤波器的分母,其中 K 是维纳滤波的参数,用于控制噪声增强的程度。PSF_fft_1 = np.conj(PSF_fft) /(np.abs(PSF_fft)** 2 + K)# 将输入图像的傅里叶变换与维纳滤波器的傅里叶变换逐元素相乘,然后进行逆傅里叶变换,得到维纳滤波后的时域结果。result = fft.ifft2(input_fft * PSF_fft_1)# 将维纳滤波后的频域结果进行频谱中心平移,取其绝对值,得到维纳滤波后的时域图像。result = np.abs(fft.fftshift(result))return resultimage = cv2.imread('R.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
img_h =image.shape[0]
img_w =image.shape[1]
plt.figure(1)
plt.rcParams['font.sans-serif'] = ['SimHei']  # 选择一个包含中文字符的字体
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.xlabel("原始图像")
plt.gray()
plt.imshow(image) #显示原图像
plt.figure(2)
plt.gray()# 进行运动模糊处理
PSF = motion_process((img_h, img_w), 60)
blurred = np.abs(make_blurred(image, PSF, 1e-3))
plt.subplot(231)
plt.xlabel(" 进行模糊 ")
plt.imshow(blurred)
result = inverse(blurred, PSF, 1e-3)
# 逆滤波,对图像进行滤波处理
result = np.flipud(result)
result = np.fliplr(result)
plt.subplot(232)
plt.xlabel("对进行模糊的图像进行逆滤波")
plt.imshow(result)result = wiener(blurred, PSF, 1e-3)  # 维纳滤波
plt.subplot(233)
plt.xlabel("对模糊后的图像进行维纳滤波(k=0.01)")
plt.imshow(result)# 在模糊图像上进一步添加呈正态分布的噪声
blurred_noisy = blurred + 0.1 * blurred.std()*\np.random.standard_normal(blurred.shape)  # 添加噪声,standard_normal# 产生随机的函数
plt.subplot(234)
plt.xlabel("在模糊图像上引入噪声")
plt.imshow(blurred_noisy)  # 显示添加噪声且运动模糊的图像result=inverse(blurred_noisyPSF,0.1+1e-3) # 对添加噪声的图像进行逆滤波
plt.subplot(235)
plt.xlabel("对模糊和加噪的图片进行逆滤波")
plt.imshow(result)
result = wiener(blurred_noisy, PSF,0.1 + 1e-3)  # 对添加噪声的图像进行维纳滤波
plt.subplot(236)
plt.xlabel("对模糊和加噪的图片进行维纳滤波(k=0.01) ")
plt.imshow(result)
plt.tight_layout()
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/264412.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NGINX高性能服务器与关键概念解析

目录 1 NGINX简介2 NGINX的特性3 正向代理4 反向代理5 负载均衡6 动静分离7 高可用8 结语 1 NGINX简介 NGINX&#xff08;“engine x”&#xff09;在网络服务器和代理服务器领域备受推崇。作为一款高性能的 HTTP 和反向代理服务器&#xff0c;它以轻量级、高并发处理能力以及…

STM32 标准外设SPL库、硬件抽象层HAL库、低层LL库区别?

1、STM32 之一 HAL库、标准外设库、LL库_ZCShou的博客-CSDN博客_ll库&#xff08;仔细阅读&#xff09; 2、STM32标准外设库、 HAL库、LL库 - King先生 - 博客园 3、STM32 之 HAL库_戈 扬的博客&#xff08;仔细阅读&#xff09; 4、STM32 LL 为什么比 HAL 高效&#xff1…

RedHat9中安装Mysql8.0+出现“错误:GPG 检查失败“的处理

近期通过VM安装了RedHat9&#xff0c;之后在RedHat9中安装Mysql8.0的时候出现了个问题&#xff1a;“错误&#xff1a;GPG 检查失败”&#xff0c;如图所示&#xff1a; 解决方案&#xff1a;重新导入新的秘钥即可&#xff0c;如下所示&#xff1a; rpm --import https://rep…

前端开发tips

前端开发tips 关于package.json里面&#xff0c;尖角号&#xff08;^&#xff09;和波浪线&#xff08;~&#xff09;的区别 在package.json里面&#xff0c;我们可以使用尖角号&#xff08;^&#xff09;和波浪线&#xff08;~&#xff09;来表示不同的包版本。这些符号通常被…

Cpolar配置外网访问和Dashy

Dashy是一个开源的自托管的导航页配置服务,具有易于使用的可视化编辑器、状态检查、小工具和主题等功能。你可以将自己常用的一些网站聚合起来放在一起,形成自己的导航页。一款功能超强大,颜值爆表的可定制专属导航页工具 结合cpolar内网工具,我们实现无需部署到公网服务器…

C语言面试之旅:掌握基础,探索深度(面试实战之单片机80C51单片机中断)

一、中断概念 中断是计算机科学中的一个重要概念&#xff0c;指当出现某些特殊情况时&#xff0c;处理器会暂停正在执行的程序&#xff0c;转而执行另一段特定的程序&#xff0c;处理完之后再返回到原程序继续执行。这个特殊的情况就叫做中断。 在80C51单片机中&#xff0c;当某…

Low Cost and High Performance FPGA with ARM and SDRAM inside

AG10KSDE176 AGM AG10KSDE176 是由 AGM FPGA AG10K 与 SDRAM 叠封集成的芯片&#xff0c;具有 AG10K FPGA 的可编程功能&#xff0c;提供更多可编程 IO&#xff0c;同时内部连接大容量 SDRAM。  FPGA 外部管脚输出 EQFP176 封装底部 Pad 为 GND&#xff0c;管脚说明请见下表&…

学习Linux(3)-Linux软件安装之yum

什么是yum yum&#xff08; Yellow dog Updater, Modified&#xff09;是一个在 Fedora 和 RedHat 以及 SUSE 中的 Shell 前端软件包管理器。 假设&#xff0c;在一台window系统的电脑上要用qq&#xff0c;那么我们回去下载qq的安装包&#xff0c;然后执行qq.exe文件在本机上进…

SpringIOC之ConfigurationClassUtils

博主介绍&#xff1a;✌全网粉丝5W&#xff0c;全栈开发工程师&#xff0c;从事多年软件开发&#xff0c;在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战&#xff0c;博主也曾写过优秀论文&#xff0c;查重率极低&#xff0c;在这方面有丰富的经验…

Nodejs后端+express框架

前言 基于vue3Node后台管理项目&#xff0c;补充nodejs和express相关知识。 文章目录 一&#xff0c;express 1.官网 Express - 基于 Node.js 平台的 web 应用开发框架 - Express中文文档 | Express中文网 2.安装 npm install express --save 二、MongoDB 特点 非关…

Java学习总结

1. Java集合体系框架 java.util中包含 Java 最常用的the collections framework。 Java集合类主要由两个根接口Collection和Map派生出来的。 Collection 接口派生出了三个子接口List、Set、Queue。Map 接口 因此Java集合大致也可分成List、Set、Queue、Map四种接口体系。 …

IBM Qiskit量子机器学习速成(六)

量子卷积神经网络 卷积和池化&#xff1a;卷积神经网络的必备成分 卷积神经网络被广泛应用于图像和音频的识别当中&#xff0c;关键在于“卷积”操作赋予神经网络统筹学习数据的能力。 执行卷积操作需要输入数据与卷积核&#xff0c;卷积核首先与输入数据左上角对齐&#xf…