聚类算法的性能度量

聚类算法的性能度量

聚类算法就是根据数据中样本与样本之间的距离或相似度,将样本划分为若干组/类/簇,其划分的原则:簇内样本相似、簇间样本不相似,聚类的结果是产生一个簇的集合。

其划分方式主要分为两种,

  • 嵌套类型

image-20231210183802857

  • 非嵌套类型

image-20231210183706349

其中簇往往分为三种情况

  1. 基于中心的簇:簇内的点和其“中心”较为相近(或相似),和其他簇的“中心”较远,这样的一组样本形成的簇
  2. 基于邻接的簇:相比其他任何簇的点,每个点都至少和所属簇的某一个点更近
  3. 基于密度的簇:簇是由高密度的区域形成的,簇之间是一些低密度的区域

簇的相似性与距离度量

若采用距离为度量

闵可夫斯基距离: d i s t ( x i , x j ) = ( ∑ d = 1 D ∣ x i , d − x j , d ∣ p ) 1 / p dist(x^i,x^j)=\left(\sum_{d=1}^D|x_{i,d}-x_{j,d}|^p\right)^{1/p} dist(xi,xj)=(d=1Dxi,dxj,dp)1/p
p = 2 p=2 p=2时,为欧氏距离 : d i s t ( x i , x j ) = ∑ d = 1 D ( x i , d − x j , d ) 2 :dist(x^i,x^j)=\sqrt{\sum_{d=1}^D\left(x_{i,d}-x_{j,d}\right)^2} :dist(xi,xj)=d=1D(xi,dxj,d)2
p = 1 p=1 p=1时,为曼哈顿距离: d i s t ( x i , x j ) = ∑ d = 1 D ∣ x i , d − x j , d ∣ dist(x^i,x^j)=\sum_{d=1}^D\left|x_{i,d}-x_{j,d}\right| dist(xi,xj)=d=1Dxi,dxj,d

这类距离函数对特征的旋转和平移变换不敏感,对数值尺度敏感

若采用余弦相似度量

两变量 x i , x j x^i,x^j xi,xj,看作D维空间的两个向量,这两个向量间的夹角余弦可用下式进行计算
s ( x i , x j ) = ∑ d = 1 D x i , d x j , d ∑ d = 1 D x i , d 2 ∑ d = 1 D x j , d 2 = ( x i ) T x j ∥ x i ∥ ∥ x j ∥ s(x^i,x^j)=\frac{\sum_{d=1}^Dx_{i,d}x_{j,d}}{\sqrt{\sum_{d=1}^Dx_{i,d}^2}\sqrt{\sum_{d=1}^Dx_{j,d}^2}}=\frac{(x^i)^Tx^j}{\|x^i\|\|x^j\|} s(xi,xj)=d=1Dxi,d2 d=1Dxj,d2 d=1Dxi,dxj,d=xi∥∥xj(xi)Txj
若采用相关系数
r ( x i , x j ) = c o v ( x i , x j ) σ x i σ x j = E [ ( x i − μ i ) ( x j − μ j ) ] σ x i σ x j = ∑ d = 1 D ( x i , d − μ i , d ) ( x j , d − μ j , d ) ∑ d = 1 D ( x i , d − μ i , d ) 2 ∑ d = 1 D ( x j , d − μ j , d ) 2 \begin{gathered} r(x^i,x^j)=\frac{cov(x^i,x^j)}{\sigma_{x_i}\sigma_{x_j}}=\frac{\mathbb{E}[(x^i-\mu^i)(x^j-\mu^j)]}{\sigma_{x_i}\sigma_{x_j}} \\ \begin{aligned}=\frac{\sum_{d=1}^D(x_{i,d}-\mu_{i,d})(x_{j,d}-\mu_{j,d})}{\sqrt{\sum_{d=1}^D\left(x_{i,d}-\mu_{i,d}\right)^2\sum_{d=1}^D\left(x_{j,d}-\mu_{j,d}\right)^2}}\end{aligned} \end{gathered} r(xi,xj)=σxiσxjcov(xi,xj)=σxiσxjE[(xiμi)(xjμj)]=d=1D(xi,dμi,d)2d=1D(xj,dμj,d)2 d=1D(xi,dμi,d)(xj,dμj,d)
当数据采用中心化处理后 μ i = μ j = 0 \mu_i=\mu_j=0 μi=μj=0,相关系数等于余弦相似度

对聚类算法的性能评价指标

参考模型

设存在数据集 D = { x 1 , x 2 , . . . x N } D=\{x^1,x^2,...x^N\} D={x1,x2,...xN},聚类结果 : C = { C 1 , C 2 , . . . C K } :C=\{\mathcal{C}_1,\mathcal{C}_2,...\mathcal{C}_K\} :C={C1,C2,...CK},其中 C k \mathcal{C}_k Ck表示属于类别 k k k的样本的集合,其中参考模型的分类结果为 C ∗ = { C 1 ∗ , . . . , C K ∗ } \mathcal{C}^*=\{\mathcal{C}_1^*,...,\mathcal{C}_K^*\} C={C1,...,CK}, λ \lambda λ λ ∗ \lambda^* λ 分别为 c c c c ∗ c^* c 的标记向量

其中聚类结果有4种情况
a = { ( x i , x j ) ∣ x i , x j ∈ C k ; x i , x j ∈ C l ∗ } 在两种聚类结果中,两个样本的所属的簇相同 d = { ( x i , x j ) ∣ x i ∈ C k 1 , x j ∈ C k 2 ; x i ∈ C l 1 ∗ , x j ∈ C l 2 ∗ } 在两种聚类结果中,两个样本的所属的簇不同 b = { ( x i , x j ) ∣ x i , x j ∈ C k ; x i ∈ C l 1 ∗ , x j ∈ C l 2 ∗ } c = { ( x i , x j ) ∣ x i ∈ C k 1 , x j ∈ C k 2 ; x i , x j ∈ C l ∗ } \begin{aligned} a=&\begin{Bmatrix}(x^i,x^j)|x^i,x^j\in\mathcal{C}_k;&x^i,x^j\in\mathcal{C}_l^*\end{Bmatrix}\\ &\text{在两种聚类结果中,两个样本的所属的簇相同}\\ d=&\{(x^i,x^j)|x^i\in\mathcal{C}_{k1},x^j\in\mathcal{C}_{k2};\:x^i\in\mathcal{C}_{l1}^*,x^j\in\mathcal{C}_{l2}^*\}\\ &\text{在两种聚类结果中,两个样本的所属的簇不同}\\ b=&\big\{(x^i,x^j)|x^i,x^j\in\mathcal{C}_k;\:x^i\in C_{l1}^*,x^j\in\mathcal{C}_{l2}^*\big\}\\ c=&\big\{(x^i,x^j)|x^i\in\mathcal{C}_{k1},x^j\in\mathcal{C}_{k2};\:x^i,x^j\in\mathcal{C}_l^*\big\} \end{aligned} a=d=b=c={(xi,xj)xi,xjCk;xi,xjCl}在两种聚类结果中,两个样本的所属的簇相同{(xi,xj)xiCk1,xjCk2;xiCl1,xjCl2}在两种聚类结果中,两个样本的所属的簇不同{(xi,xj)xi,xjCk;xiCl1,xjCl2}{(xi,xj)xiCk1,xjCk2;xi,xjCl}
每个样本对 ( x i , x j ) ( i < j ) (x_i,x_j)(i<j) (xi,xj)(i<j) 仅能出现在一个集合中,因此有 a + b + c + d = m ( m − 1 ) / 2 a+b+c+d=m(m-1)/2 a+b+c+d=m(m1)/2 成立

image-20231210195914914

Jaccard 系数(Jaccard Coefficient, 简称 JC)
JC = a a + b + c \text{JC}=\frac a{a+b+c} JC=a+b+ca
FM 指数(Fowlkes and Mallows Index, 简称 FMI)
F M I = a a + b ⋅ a a + c \mathrm{FMI}=\sqrt{\frac a{a+b}\cdot\frac a{a+c}} FMI=a+baa+ca
Rand 指数(Rand Index, 简称 RI$) $
R I = 2 ( a + d ) N ( N − 1 ) \mathrm{RI}=\frac{2(a+d)}{N(N-1)} RI=N(N1)2(a+d)
上述性能度量的结果值均在 [0,1] 区间,值越大越好

无参考模型

其要求簇内相似度越大越好,簇间相似度越小越好

平均距离:
a v g ( C k ) = 1 ∣ C k ∣ ( ∣ C k ∣ − 1 ) ∑ x i , x j ∈ C k d i s t ( x i , x j ) avg(\mathcal{C}_k)=\frac1{|\mathcal{C}_k|(|\mathcal{C}_k|-1)}\sum_{x^i,x^j\in\mathcal{C}_k}dist(x^i,x^j) avg(Ck)=Ck(Ck1)1xi,xjCkdist(xi,xj)
最大距离:
d i a m ( C k ) = max ⁡ x i , x j ∈ C k d i s t ( x i , x j ) diam\left(\mathcal{C}_k\right)=\max_{x^i,x^j\in\mathcal{C}_k}dist(\boldsymbol{x}^i,\boldsymbol{x}^j) diam(Ck)=xi,xjCkmaxdist(xi,xj)
簇的半径:
d i a m ( C k ) = 1 ∣ C k ∣ ∑ x i ∈ C k ( d i s t ( x i , μ k ) ) 2 diam(\mathcal{C}_k)=\sqrt{\frac1{|C_k|}\sum_{x^i\in\mathcal{C}_k}(dist(x^i,\mu^k))^2} diam(Ck)=Ck1xiCk(dist(xi,μk))2
其中 μ k = 1 ∣ C k ∣ ∑ x i ∈ C k x i \mu^{k}=\frac{1}{|\mathcal{C}_{k}|}\sum_{x^{i}\in\mathcal{C}_{k}}\boldsymbol{x}^{i} μk=Ck1xiCkxi

最小距离:
d m i n ( C k , C l ) = min ⁡ x i ∈ C k , x j ∈ C l d i s t ( x i , x j ) d_{min}(\mathcal{C}_k,\mathcal{C}_l)=\min_{x^i\in\mathcal{C}_k,x^j\in\mathcal{C}_l}dist(x^i,x^j) dmin(Ck,Cl)=xiCk,xjClmindist(xi,xj)
类中心的距离:
d c e n ( C k , C l ) = d i s t ( μ k , μ l ) , d_{cen}(\mathcal{C}_k,\mathcal{C}_l)=dist(\mathbf{\mu}^k,\mathbf{\mu}^l), dcen(Ck,Cl)=dist(μk,μl),
DB指数(DBI)【簇内距离/簇间距离】:
D B I = 1 K ∑ k = 1 K max ⁡ k ≠ l arg ⁡ ( C k ) + a v g ( C l ) d c e n ( C k , C l ) DBI=\frac1K\sum_{k=1}^K\max_{k\neq l}\frac{\arg(\mathcal{C}_k)+avg(\mathcal{C}_l)}{d_{cen}(\mathcal{C}_k,\mathcal{C}_l)} DBI=K1k=1Kk=lmaxdcen(Ck,Cl)arg(Ck)+avg(Cl)
其中DBI越小越好,即簇越小越远

Dunn 指数(DI)【最小簇间距离/最大簇的半径】:
D I = min ⁡ 1 ≤ k < l ≤ K d m i n ( C k , C l ) max ⁡ 1 ≤ k ≤ K d i a m ( C k ) DI=\min_{1\leq k<l\leq K}\frac{d_{min}(\mathcal{C}_k,\mathcal{C}_l)}{\max_{1\leq k\leq K}diam(\mathcal{C}_k)} DI=1k<lKminmax1kKdiam(Ck)dmin(Ck,Cl)
其中DI越大越好

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/264845.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mybatis源码解析5:Mapper执行流程1

Mybatis源码解析5&#xff1a;Mapper执行流程1 1.项目结构2. 源码分析2.1 Mapper代理 MapperProxy#invoke2.2 创建MapperMethod2.2.1 方法名称解析器ParamNameResolve2.2.2 MapperMethod#execute 2.3 DefaultSqlSession2.4 CachingExecutor2.5 SimpleExecutor#doQuery获取连接对…

AD域控环境搭建操作手册

AD域搭建 1、准备环境1.0、介绍什么是域控服务器为什么需要域域控制器的作用部署域服务器需要考虑几个方面什么是活动目录活动目录与DNS的关系 1.1、安装Windows Serve 20191.2、安装Windows101.3、安装域服务1.4、W10加入域环境1.5、OU和域用户的创建1.6、域用户安全策略1.7、…

Wireshark使用技巧

Wireshark作为网络数据软件&#xff0c;功能强大&#xff0c;本专栏介绍仅为冰山一角&#xff0c;仅仅是一个入门级别的介绍&#xff0c;大部分功能还需要在日常工作中进行挖掘。 总结Wireshark软件的使用技巧如下&#xff1a; 1.合理部署Wireshark的位置&#xff0c;从源头保障…

ArkUI Button组件

Button 1.声明button组件 Button(label?:ResourceStr) label是按钮上面显示的文字 如果不传入label 则需要在内部嵌套其他组件 内部嵌套其他组件 可以放入icon图标来构建自己想要的样式 按钮类型 按钮使用type(ButtonType.xxx)属性来设置&#xff0c;xxx的类型分为三种 1.…

导入pgsql中的保存的html数据到hive时,换行符无法被repalce

数据如图所示&#xff1a; 当我使用replace函数 \r\n 、\r 、 \n替换时。无论如何都无法替换 最终发现可以使用chr(ASCII码) 可以匹配到&#xff0c;坑我好久。 replace(replace(replace(replace(replace(bid_html_con, chr(9),),chr(10),),chr(13),),chr(160),),chr(32),)

【GIS】JDK版本升级到17后,GeoServer的图层无法通过openLayer预览

JDK版本升级到17后&#xff0c;图层无法通过openLayer预览 1. 错误图示 终端输出的错误 网页端无法显示图层&#xff0c;并且输出错误提示 2.原因猜测 估计可能是由于java17的模块化&#xff0c;Java被分成了多个独立部署和运行的模块&#xff0c;这使得Java应用能够更快…

PyTorch深度学习实战——人群计数

PyTorch深度学习实战——人群计数 0. 前言1. 人群计数1.1 基本概念1.2 CRSNet 架构 2. 使用 CSRNet 实现人群计数2.1 模型分析2.2 数据集分析2.3 模型构建与训练 相关链接 0. 前言 人群计数是指通过图像或视频分析技术&#xff0c;对给定场景中的人群数量进行估计和统计的过程…

17、类模板

17、类模板 类模板类模板的声明类模板的使用类模板的静态成员类模板的递归实例化 类模板扩展数值型的模板参数模板型成员变量模板型成员函数模板型成员类型模板型模板参数 典型模板错误嵌套依赖依赖模板参数访问成员函数模板子类模板访问基类模板类模板中的成员虚函数 类模板 …

什么是神经网络的非线性

大家好啊&#xff0c;我是董董灿。 最近在写《计算机视觉入门与调优》&#xff08;右键&#xff0c;在新窗口中打开链接&#xff09;的小册&#xff0c;其中一部分说到激活函数的时候&#xff0c;谈到了神经网络的非线性问题。 今天就一起来看看&#xff0c;为什么神经网络需…

Vue router深入学习

Vue router深入学习 一、单页应用程序介绍 1.概念 单页应用程序&#xff1a;SPA【Single Page Application】是指所有的功能都在一个html页面上实现 2.具体示例 单页应用网站&#xff1a; 网易云音乐 https://music.163.com/ 多页应用网站&#xff1a;京东 https://jd.co…

【MYSQL】单表查询

查询语法&#xff1a; select 字段&#xff08;*表示全字段&#xff09; from 数据表 【where 条件表达式】 【group by 分组字段【having 分组条件表达式】】 【order by 排序字段【asc | desc】】 例子&#xff1a; 教职工表Teacher(Tno, TName, age, sal, mgr, DNo)&#…

通过异步序列化提高图表性能 Diagramming for WPF

通过异步序列化提高图表性能 2023 年 12 月 6 日 MindFusion.Diagramming for WPF 4.0.0 添加了异步加载和保存文件的功能&#xff0c;从而提高了响应能力。 MindFusion.Diagramming for WPF 提供了一个全面的工具集&#xff0c;用于创建各种图表&#xff0c;包括组织结构图、图…