智能优化算法应用:基于缎蓝园丁鸟算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于缎蓝园丁鸟算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于缎蓝园丁鸟算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.缎蓝园丁鸟算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用缎蓝园丁鸟算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.缎蓝园丁鸟算法

缎蓝园丁鸟算法原理请参考:https://blog.csdn.net/u011835903/article/details/107857884
缎蓝园丁鸟算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

缎蓝园丁鸟算法参数如下:

%% 设定缎蓝园丁鸟优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明缎蓝园丁鸟算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/265045.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CRM系统的这些功能助您高效管理客户

客户管理可以理解为企业收集并利用客户信息,满足客户的需求,从而提升客户价值的过程。CRM系统一直被誉为客户管理的“神器”,下面我们就来说说CRM系统有哪些功能可以管理客户? 1、客户信息管理 CRM可以帮助企业收集客户的基本信…

专业课145+总分440+东南大学920考研专业基础综合信号与系统数字电路经验分享

个人情况简介 今年考研440,专业课145,数一140,期间一年努力辛苦付出,就不多表了,考研之路虽然艰难,付出很多,当收获的时候,都是值得,考研还是非常公平,希望大…

transformer模型结构|李宏毅机器学习21年

来源:https://www.bilibili.com/video/BV1Bb4y1L7FT?p4&vd_sourcef66cebc7ed6819c67fca9b4fa3785d39 文章目录 概述seq2seqtransformerEncoderDecoderAutoregressive(AT)self-attention与masked-self attentionmodel如何决定输出的长度…

并查集带压缩路径的find

目录 原因: 优化: 原因: 当路径比较特殊,如图: 非常深,最底层进行find时,循环找根(或者递归找),消耗就比较大。 我们可以进行优化。 优化: &…

Java设计模式分类

java的设计模式大体上分为三大类: 创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。 结构型模式(7种):适配器模式&am…

【算法系列篇】递归、搜索和回溯(二)

文章目录 前言1. 两两交换链表中的节点1.1 题目要求1.2 做题思路1.3 代码实现 2. Pow(X,N)2.1 题目要求2.2 做题思路2.3 代码实现 3. 计算布尔二叉树的值3.1 题目要求3.2 做题思路3.3 代码实现 4. 求根节点到叶结点数字之和4.1 题目要求4.2 做题思路4.3 代码实现 前言 前面为大…

行人重识别paper汇总

文章目录 2021Learning Generalisable Omni-Scale Representations for Person Re-Identification 参考 2021 Learning Generalisable Omni-Scale Representations for Person Re-Identification code: https://github.com/KaiyangZhou/deep-person-reid 摘要:一…

浅析以太网接口及串口转以太网技术

浅析以太网接口 以太网相关接口主要包括:MII/RMII/SMII以及GMII/RGMII/SGMII接口。 一、MII接口 MII(Media Independent Interface)介质无关接口或称为媒体独立接口,它是IEEE-802.3定义的以太网行业标准。它包括一个数据接口和…

【C++】C++异常语法、使用、规范、异常安全及异常的优缺点

1. C异常概念 异常是一种处理错误的方式,当一个函数发现自己无法处理的错误时就可以抛出异常,让函数的直接或间接的调用者处理这个错误。 throw: 当问题出现时,程序会抛出一个异常。这是通过使用 throw 关键字来完成的。catch: 在您想要处理…

HarmonyOS4.0从零开始的开发教程11给您的应用添加弹窗

HarmonyOS(十)给您的应用添加弹窗 概述 在我们日常使用应用的时候,可能会进行一些敏感的操作,比如删除联系人,这时候我们给应用添加弹窗来提示用户是否需要执行该操作,如下图所示: 弹窗是一种…

谈谈Redo Log和Undo Log

目录 概述 Redo Log Undo Log 总结 概述 在MYSQL中,日志是非常重要的,其中Redo log 和undo log都是引擎层(innodb)实现的日志,redo log 是重做日志,提供 前滚 操作,undo log 是回退日志&am…

Flask应用基础入门总结

【1】使用migrate方式进行数据库连接 使用migrate方式进行数据库连接需要在终端分别运行三行代码: #init(运行一次即可)(此db为自己设置的连接数据库的对象,可以修改) flask db init #(将orm模型生成迁移…