人体关键点检测2:Pytorch实现人体关键点检测(人体姿势估计)含训练代码

人体关键点检测2:Pytorch实现人体关键点检测(人体姿势估计)含训练代码

目录

人体关键点检测2:Pytorch实现人体关键点检测(人体姿势估计)含训练代码

1. 前言

2.人体关键点检测方法

(1)Top-Down(自上而下)方法

(2)Bottom-Up(自下而上)方法:

3.人体关键点检测数据集

4.人体检测模型训练

5.人体关键点检测模型训练

(1)项目安装

(2)准备Train和Test数据

(3)配置文件configs

(4)开始训练

(5)Tensorboard可视化训练过程

6.人体关键点检测检测模型效果

7.人体关键点检测(推理代码)下载

8.人体关键点检测(训练代码)下载

9.人体关键点检测C++/Android版本


1. 前言

人体关键点检测(Human Keypoints Detection)又称为人体姿态估计2D Pose,是计算机视觉中一个相对基础的任务,是人体动作识别、行为分析、人机交互等的前置任务。一般情况下可以将人体关键点检测细分为单人/多人关键点检测、2D/3D关键点检测,同时有算法在完成关键点检测之后还会进行关键点的跟踪,也被称为人体姿态跟踪。

本项目将实现人体关键点检测算法,其中使用YOLOv5模型实现人体检测(Person Detection),使用HRNet,LiteHRNet和Mobilenet-v2模型实现人体关键点检测。项目分为数据集说明,模型训练C++/Android部署等多个章节,本篇是项目《人体关键点检测(人体姿势估计)》系列文章之Pytorch实现人体关键点检测(人体姿势估计);为了方便后续模型工程化和Android平台部署,项目支持高精度HRNet检测模型,轻量化模型LiteHRNet和Mobilenet模型训练和测试,并提供Python/C++/Android多个版本;

轻量化Mobilenet-v2模型在普通Android手机上可以达到实时的检测效果,CPU(4线程)约50ms左右,GPU约30ms左右 ,基本满足业务的性能需求。下表格给出HRNet,以及轻量化模型LiteHRNet和Mobilenet的计算量和参数量,以及其检测精度

模型input-sizeparams(M)GFLOPsAP
HRNet-w32192×25628.48M5734.05M0.7585
LiteHRNet18192×2561.10M182.15M0.6237
Mobilenet-v2192×2562.63M529.25M0.6181

先展示一下人体关键点检测效果:

Android人体关键点检测APP Demo体验(下载):https://download.csdn.net/download/guyuealian/88610359

【尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/134837816


更多项目《人体关键点检测(人体姿势估计)》系列文章请参考:

  • 人体关键点检测1:人体姿势估计数据集(含下载链接) https://blog.csdn.net/guyuealian/article/details/134703548
  • 人体关键点检测2:Pytorch实现人体关键点检测(人体姿势估计)含训练代码和数据集 https://blog.csdn.net/guyuealian/article/details/134837816
  • 人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测 https://blog.csdn.net/guyuealian/article/details/134881797
  • 人体关键点检测4:C/C++实现人体关键点检测(人体姿势估计)含源码 可实时检测 https://blog.csdn.net/guyuealian/article/details/134881797


2.人体关键点检测方法

目前主流的人体关键点检测(人体姿势估计)方法主要两种:一种是Top-Down(自上而下)方法,另外一种是Bottom-Up(自下而上)方法;

(1)Top-Down(自上而下)方法

将人体检测和人体关键点检测(人体姿势估计)检测分离,在图像上首先进行人体目标检测,定位人体位置;然后crop每一个人体图像,再估计人体关键点;这类方法往往比较慢,但姿态估计准确度较高。目前主流模型主要有CPN,Hourglass,CPM,Alpha Pose,HRNet等。

(2)Bottom-Up(自下而上)方法:

先估计图像中所有人体关键点,然后在通过Grouping的方法组合成一个一个实例;因此这类方法在测试推断的时候往往更快速,准确度稍低。典型就是COCO2016年人体关键点检测冠军Open Pose。

通常来说,Top-Down具有更高的精度,而Bottom-Up具有更快的速度;就目前调研而言, Top-Down的方法研究较多,精度也比Bottom-Up(自下而上)方法高。本项目采用Top-Down(自上而下)方法,先使用YOLOv5模型实现人体检测,然后再使用HRNet进行人体关键点检测(人体姿势估计);

本项目基于开源的HRNet进行改进,关于HRNet项目请参考GitHub

HRNet: https://github.com/leoxiaobin/deep-high-resolution-net.pytorch


3.人体关键点检测数据集

本项目主要使用COCO数据集和MPII数据集,关于人体关键点检测数据集说明,请参考《人体关键点检测1:人体姿势估计数据集》https://blog.csdn.net/guyuealian/article/details/134703548


4.人体检测模型训练

本项目采用Top-Down(自上而下)方法,使用YOLOv5模型实现人体目标检测,使用HRNet进行人体关键点检测(人体姿势估计);关于人体检测模型训练方法,可参考 :

行人检测(人体检测)2:YOLOv5实现人体检测(含人体检测数据集和训练代码)


5.人体关键点检测模型训练

 整套工程项目基本结构如下:

.
├── configs              # 训练配置文件
├── data                 # 一些数据
├── libs                 # 一些工具库
├── pose                 # 姿态估计模型文件
├── work_space           # 训练输出工作目录
├── demo.py              # 模型推理demo文件
├── README.md            # 项目工程说明文档
├── requirements.txt     # 项目相关依赖包
└── train.py             # 训练文件

(1)项目安装

推荐使用Python3.8或Python3.7,更高版本可能存在版本差异问题,项目依赖python包请参考requirements.txt,使用pip安装即可,项目代码都在Ubuntu系统和Windows系统验证正常运行,请放心使用;若出现异常,大概率是相关依赖包版本没有完全对应

numpy==1.21.6
matplotlib==3.2.2
Pillow==8.4.0
bcolz==1.2.1
easydict==1.9
onnx==1.8.1
onnx-simplifier==0.2.28
onnxoptimizer==0.2.0
onnxruntime==1.6.0
opencv-contrib-python==4.5.2.52
opencv-python==4.5.1.48
pandas==1.1.5
PyYAML==5.3.1
scikit-image==0.17.2
scikit-learn==0.24.0
scipy==1.5.4
seaborn==0.11.2
sklearn==0.0
tensorboard==2.5.0
tensorboardX==2.1
torch==1.7.1+cu110
torchvision==0.8.2+cu110
tqdm==4.55.1
xmltodict==0.12.0
pycocotools==2.0.2
pybaseutils==0.9.4
basetrainer

项目安装教程请参考(初学者入门,麻烦先看完下面教程,配置好Python开发环境):

  • 推荐使用Python3.8或Python3.7,更高版本可能存在版本差异问题
  • 项目开发使用教程和常见问题和解决方法
  • 视频教程:1 手把手教你安装CUDA和cuDNN(1)
  • 视频教程:2 手把手教你安装CUDA和cuDNN(2)
  • 视频教程:3 如何用Anaconda创建pycharm环境
  • 视频教程:4 如何在pycharm中使用Anaconda创建的python环境

(2)准备Train和Test数据

下载COCO数据集或者MPII数据集(建议使用COCO数据集),然后:

  • COCO数据集下载并解压到本地,存储目录结构参考如下(原始图片目录和标注信息文件在同一级目录)
─── COCO├── train2017│   ├── images                           # COCO训练集原始图片目录│   └── person_keypoints_train2017.json  # COCO训练集标注信息文件└── val2017├── images                           # COCO验证集原始图片目录└── person_keypoints_val2017.json    # COCO验证集标注信息文件
  • MPII数据集下载并解压到本地,存储目录结构参考如下
─── MPII├── images      # MPII数据集原始图片目录├── train.json  # MPII训练集标注信息文件└── valid.json  # MPII训练集标注信息文件

(3)配置文件configs

项目支持HRNet以及轻量化模型LiteHRNet和Mobilenet模型训练,并提供对应的配置文件;你需要修改对应配置文件的数据路径;本篇以训练HRNet-w32为例子,其配置文件在configs/coco/hrnet/w32_adam_192_192.yaml,修改该文件的训练数据集路径TRAIN_FILE(支持多个数据集训练)和测试数据集TEST_FILE的数据路径为你本地数据路径,其他参数保持默认即可,如下所示:

WORKERS: 8
PRINT_FREQ: 10
DATASET:DATASET: 'custom_coco'TRAIN_FILE:- 'D:/COCO/train2017/person_keypoints_train2017.json'TEST_FILE: 'D:/COCO/val2017/person_keypoints_val2017.json'FLIP: trueROT_FACTOR: 45SCALE_FACTOR: 0.3SCALE_RATE: 1.25JOINT_IDS: [0,1]FLIP_PAIRS: [ ]SKELETON: [ ]

配置文件的一些参数说明,请参考

参数类型参考值说明
WORKERSint8数据加载处理的进程数
PRINT_FREQint10打印LOG信息的间隔
DATASETstrcustom_coco数据集类型,目前仅支持COCO数据格式
TRAIN_FILEList-训练数据集文件列表(COCO数据格式),支持多个数据集
TEST_FILEstring-测试数据集文件(COCO数据格式),仅支持单个数据集
FLIPboolTrue是否翻转图片进行测试,可提高测试效果
ROT_FACTORfloat45训练数据随机旋转的最大角度,用于数据增强
SCALE_FACTORfloat1.25图像缩放比例因子
SCALE_RATEfloat0.25图像缩放率
JOINT_IDSlist[ ][ ]表示所有关键点,也可以指定需要训练的关键点序号ID
FLIP_PAIRSlist[ ]图像翻转时,关键点不受翻转影响的ID号
SKELETONlist[ ]关键点连接线的序列列表,用于可视化效果

(4)开始训练

修改好配置文件后,就可以开始准备训练了:

  • 训练高精度模型HRNet-w48或者HRNet-w32
# 高精度模型:HRNet-w32
python train.py  -c "configs/coco/hrnet/w48_adam_192_192.yaml" --workers=8 --batch_size=32 --gpu_id=0 --work_dir="work_space/person"
# 高精度模型:HRNet-w48
python train.py  -c "configs/coco/hrnet/w32_adam_192_192.yaml" --workers=8 --batch_size=32 --gpu_id=0 --work_dir="work_space/person"
  • 训练轻量化模型LiteHRNet
# 轻量化模型:LiteHRNet
python train.py  -c "configs/coco/litehrnet/litehrnet18_192_192.yaml" --workers=8 --batch_size=32 --gpu_id=0 --work_dir="work_space/person"
  • 训练轻量化模型Mobilenetv2
# 轻量化模型:Mobilenet
python train.py  -c "configs/coco/mobilenet/mobilenetv2_192_192.yaml" --workers=8 --batch_size=32 --gpu_id=0 --work_dir="work_space/person"

下表格给出HRNet,以及轻量化模型LiteHRNet和Mobilenet的计算量和参数量,以及其检测精度AP; 高精度检测模型HRNet-w32,AP可以达到0.7585,但其参数量和计算量比较大,不合适在移动端部署;LiteHRNet18和Mobilenet-v2参数量和计算量比较少,合适在移动端部署;虽然LiteHRNet18的理论计算量和参数量比Mobilenet-v2低,但在实际测试中,发现Mobilenet-v2运行速度更快。轻量化Mobilenet-v2模型在普通Android手机上可以达到实时的检测效果,CPU(4线程)约50ms左右,GPU约30ms左右 ,基本满足业务的性能需求

模型input-sizeparams(M)GFLOPsAP
HRNet-w32192×25628.48M5734.05M0.7585
LiteHRNet18192×2561.10M182.15M0.6237
Mobilenet-v2192×2562.63M529.25M0.6181

(5)Tensorboard可视化训练过程

训练过程可视化工具是使用Tensorboard,使用方法,在终端输入:
# 基本方法
tensorboard --logdir=path/to/log/
# 例如
tensorboard --logdir="work_space/person/hrnet_w32_16_192_256_mpii_20231127_113836_6644/log"

点击终端TensorBoard打印的链接,即可在浏览器查看训练LOG信息等:


6.人体关键点检测检测模型效果

demo.py文件用于推理和测试模型的效果,填写好配置文件,模型文件以及测试图片即可运行测试了;demo.py命令行参数说明如下:

参数类型参考值说明
-c,--config_filestr-配置文件
-m,--model_filestr-模型文件
targetstr-骨骼点类型,如hand,coco_person,mpii_person
image_dirstrdata/image测试图片的路径
video_filestr,int-测试的视频文件
out_dirstroutput保存结果,为空不保存
thresholdfloat0.3关键点检测置信度
devicestrcuda:0GPU ID

下面以运行HRNet-w32为样例,其他模型修改--config_file或者--model_file即可

  • 测试图片
python demo.py -c work_space/person/hrnet_w32_17_192_256_custom_coco_20231115_092948_1789/w32_adam_192_192.yaml -m work_space/person/hrnet_w32_17_192_256_custom_coco_20231115_092948_1789/model/best_model_195_0.7585.pth --image_dir data/test_images --out_dir output
  • 测试视频文件
python demo.py -c work_space/person/hrnet_w32_17_192_256_custom_coco_20231115_092948_1789/w32_adam_192_192.yaml -m work_space/person/hrnet_w32_17_192_256_custom_coco_20231115_092948_1789/model/best_model_195_0.7585.pth --video_file data/video-test.mp4 --out_dir output
  •  测试摄像头
python demo.py -c work_space/person/hrnet_w32_17_192_256_custom_coco_20231115_092948_1789/w32_adam_192_192.yaml -m work_space/person/hrnet_w32_17_192_256_custom_coco_20231115_092948_1789/model/best_model_195_0.7585.pth --video_file 0 --out_dir output

项目同时支持MPII数据集格式人体关键点检测

  • 测试图片(MPII格式的人体关键点检测)
python demo.py -c work_space/person/hrnet_w32_16_192_256_mpii_20231127_113836_6644/w32_adam_192_192.yaml -m work_space/person/hrnet_w32_16_192_256_mpii_20231127_113836_6644/model/best_model_148_89.4041.pth --image_dir data/test_images --out_dir output --target mpii_person

运行效果(支持单人和多人人体关键点检测):


7.人体关键点检测(推理代码)下载

人体关键点检测推理代码下载地址:Pytorch实现人体关键点检测(人体姿势估计)推理代码

资源内容包含:人体关键点检测推理代码(Pytorch)

  1. 提供YOLOv5人体检测推理代码(不包含训练代码)
  2. 提供人体关键点检测(人体姿势估计)推理代码demo.py(不包含训练代码)
  3. 提供高精度版本HRNet人体关键点检测(人体姿势估计)(不包含训练代码)
  4. 提供轻量化模型LiteHRNet,以及Mobilenet-v2人体关键点检测(人体姿势估计)(不包含训练代码)
  5. 提供训练好的模型:HRNet-w32,LiteHRNet和Mobilenet-v2模型权重文件,配置好环境,可直接运行demo.py
  6. 推理代码demo.py支持图片,视频和摄像头测试

 如果你需要配套的训练数据集和训练代码,请查看下面部分


8.人体关键点检测(训练代码)下载

人体关键点检测训练代码下载地址: 

资源内容包含:

  1. 提供YOLOv5人体检测推理代码
  2. 提供整套完整的项目工程代码,包含人体关键点检测(人体姿势估计)的训练代码train.py和推理测试代码demo.py
  3. 提供高精度版本HRNet人体关键点检测(人体姿势估计)训练和测试代码
  4. 提供轻量化模型LiteHRNet以及Mobilenet-v2人体关键点检测(人体姿势估计)训练和测试代码
  5. 项目代码支持MPII数据集和COCO数据集人体关键点检测模型训练和测试
  6. 根据本篇博文说明,简单配置即可开始训练:train.py
  7. 提供训练好的模型:HRNet-w32,LiteHRNet和Mobilenet-v2模型权重文件,配置好环境,可直接运行demo.py
  8. 推理代码demo.py支持图片,视频和摄像头测试

9.人体关键点检测C++/Android版本

  • 人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测 https://blog.csdn.net/guyuealian/article/details/134881797
  • 人体关键点检测4:C/C++实现人体关键点检测(人体姿势估计)含源码 可实时检测 https://blog.csdn.net/guyuealian/article/details/134881797

 Android人体关键点检测APP Demo体验(下载):https://download.csdn.net/download/guyuealian/88610359 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/265995.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux实用操作篇-下篇

Linux实用操作篇-上篇:Linux实用操作-上篇-CSDN博客 一、网络传输 1.1 ping命令 网络是否可联通 可以通过ping命令,检查指定的网络服务器是否是可联通状态 语法: ping [-c num] ip或主机名 选项:-c,检查的次数,…

遥感图像之多模态检索AMFMN(支持关键词、句子对图像的检索)论文阅读、环境搭建、模型测试、模型训练

一、论文阅读 1、摘要背景 遥感跨模态文本图像检索以其灵活的输入和高效的查询等优点受到了广泛的关注。然而,传统的方法忽略了遥感图像多尺度和目标冗余的特点,导致检索精度下降。为了解决遥感多模态检索任务中的多尺度稀缺性和目标冗余问题&#xff…

基于ssm的园区停车管理系统论文

摘 要 网络技术和计算机技术发展至今,已经拥有了深厚的理论基础,并在现实中进行了充分运用,尤其是基于计算机运行的软件更是受到各界的关注。加上现在人们已经步入信息时代,所以对于信息的宣传和管理就很关键。因此园区停车信息的…

Java - Lombok介绍、使用、工作原理、优缺点

介绍 Project Lombok is a java library that automatically plugs into your editor and build tools, spicing up your java.Never write another getter or equals method again, with one annotation your class has a fully featured builder, Automate your logging vari…

企业网站运营不稳定有什么影响

如果一个公司的网站打开都有困难,那么用户会对这个企业的实力产生怀疑,企业网站除了作为企业的名片外,更多的是承担增加企业交易订单的任务。因此很多网站会做有关的网络广告或者搜索引擎优化的工作。如果网站无法正常打开,那么用…

leetcode 股票DP系列 总结篇

121. 买卖股票的最佳时机 你只能选择 某一天 买入这只股票&#xff0c;并选择在 未来的某一个不同的日子 卖出该股票。 只能进行一次交易 很简单&#xff0c;只需边遍历边记录最小值即可。 class Solution { public:int maxProfit(vector<int>& prices) {int res …

关于对向量检索研究的一些学习资料整理

官方学习资料 主要是的学习资料是&#xff0c; 官方文档 和官方博客。相关文章还是挺多 挺不错的 他们更新也比较及时。有最新的东西 都会更新出来。es scdn官方博客 这里简单列一些&#xff0c;还有一些其他的&#xff0c;大家自己感兴趣去看。 什么是向量数据库 Elasticse…

线程安全的哈希表ConcurrentHashMap

1. HashTable 不推荐使用&#xff0c;无脑给各种方法加锁 2.ConcurrentHashMap 多线程下推荐使用 锁粒度控制 HashTable直接在方法上加synchronized&#xff0c;相当于对哈希表对象加锁&#xff0c;一个哈希表只有一把锁。多线程环境下&#xff0c;无论线程如何操作哈希表…

融合科技,升级医疗体验——医院陪诊服务的技术创新

随着科技的迅猛发展&#xff0c;医疗服务领域也在积极借助技术手段提升患者体验。本文将探讨如何利用先进的技术代码&#xff0c;将医院陪诊服务推向新的高度。 1. 医疗预约系统的实现 # 通过Python代码实现医疗预约系统 class MedicalAppointment:def __init__(self, patie…

Java网络编程-深入理解BIO、NIO

深入理解BIO与NIO BIO BIO 为 Blocked-IO&#xff08;阻塞 IO&#xff09;&#xff0c;在 JDK1.4 之前建立网络连接时&#xff0c;只能使用 BIO 使用 BIO 时&#xff0c;服务端会对客户端的每个请求都建立一个线程进行处理&#xff0c;客户端向服务端发送请求后&#xff0c;…

使用Java实现汉诺塔问题

文章目录 汉诺塔问题 今天和大家来看看汉诺塔问题&#xff0c;这也是一个经典的算法 汉诺塔问题 分治算法经典问题&#xff1a;汉诺塔问题 汉诺塔的传说 汉诺塔&#xff1a;汉诺塔&#xff08;又称河内塔&#xff09;问题是源于印度一个古老传说的益智玩具。大梵天创造世界的…

Ubuntu安装TensorRT

文章目录 1. 安装CUDAa. 下载CUDAb. 安装CUDAc. 验证CUDA 2. 安装CUDNNa. 下载CUDNNb. 安装CUDNNc. 验证CUDNN 3. 安装TensorRTa. 下载TensorRTb. 解压TensorRTc. 安装TensorRTd. 安装uff和graphsurgeone. 验证是否安装成功f. 备注 关注公众号&#xff1a;『AI学习星球』 回复&…