基于YOLOv8深度学习的血细胞检测与计数系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战、智慧医疗

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:血细胞检测与计数系统在医疗保健领域有着重要的应用价值。该系统利用YOLOv8等先进的深度学习算法,可以准确地识别和计数血液样本中的血小板、红细胞和白细胞,为医疗诊断、疾病监测和治疗提供了重要的技术支持。本文基于YOLOv8深度学习框架,通过874张图片,训练了一个进行血细胞检测的目标检测模型,可以检测'血小板', '红细胞', '白细胞'这3种目标类型,准确率高达93%。并基于此模型开发了一款带UI界面的血细胞检测与计数系统,可用于实时检测场景中的血细胞检测与各类别计数,更方便进行功能的展示。该系统是基于pythonPyQT5技术开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)保存图片与视频检测结果
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

血细胞检测与计数系统在医疗保健领域有着重要的应用价值。该系统利用YOLOv8等先进的深度学习算法,可以准确地识别和计数血液样本中的血小板、红细胞和白细胞,为医疗诊断、疾病监测和治疗提供了重要的技术支持。

首先,血细胞检测与计数系统可以帮助医疗工作者进行快速、准确的血细胞计数。通过自动化的检测技术,可以大大减轻医护人员的工作负担,提高对患者血液数据的处理效率和准确性,为医疗诊断和治疗提供及时可靠的数据支持。
其次,该系统还可应用于疾病诊断和监测。血小板、红细胞和白细胞等血液细胞的数量和比例与多种疾病的发生、发展和治疗效果密切相关。通过实时监测和计数,可以及时评估患者的病情变化,帮助医生进行疾病诊断和治疗方案的制定。
此外,血细胞检测与计数系统还可用于科学研究和药物研发。通过对血细胞的自动检测和计数,可以支持相关医学研究和临床试验,为新药研发和治疗方法的验证提供必要数据。
综上所述,血细胞检测与计数系统在临床医学诊断、疾病监测和治疗、医学研究等领域具有重要应用价值。其自动化、高效、准确的特点,将为医疗保健领域的发展和进步带来积极的影响。

博主通过搜集血细胞的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的血细胞检测与计数系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行进行血细胞中的'血小板', '红细胞', '白细胞'这3种目标检测,并统计每个类别的数量
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。
在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
在这里插入图片描述

在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

通过网络上搜集关于火焰及烟雾的各类图片,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含874张图片,其中训练集包含765张图片验证集包含73张图片测试集包含36张图片部分图像及标注如下图所示。
在这里插入图片描述

在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将跌倒检测的图片分为训练集与验证集放入BloodCellData目录下。
在这里插入图片描述

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\BloodCellDetection\datasets\BloodCellData\train
val: E:\MyCVProgram\BloodCellDetection\datasets\BloodCellData\valid
test: E:\MyCVProgram\BloodCellDetection\datasets\BloodCellData\testnc: 3
names: ['Platelets', 'RBC', 'WBC']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':# Use the modelresults = model.train(data='datasets/BloodCellData/data.yaml', epochs=250, batch=4)  # 训练模型# 将模型转为onnx格式# success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型3类目标检测的mAP@0.5平均值为0.934,结果还是很不错的。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/BloodImage_00015_jpg.rf.05a2f2e5db135888ca21be7cd067d951.jpeg"# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款血细胞检测与计数系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的血细胞检测与计数系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/267203.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(纯原创)基于JavaWeb的宠物领养商城(详细源码以及开发设计报告)

摘要 本宠物领养系统以MVC分层为原则,数据持久化使用Mybatis,数据库使用MySQL,这些技术目前相对比较成熟,方便系统的维护与扩展 商城系统包括了宠物领养、用户注册、用户登录、商品查询、商品添加到购物车、删除商品等几大功能…

LeetCode:1631. 最小体力消耗路径(SPFA Java)

目录 1631. 最小体力消耗路径 题目描述: 实现代码与解析: BFSDP 原理思路: 1631. 最小体力消耗路径 题目描述: 你准备参加一场远足活动。给你一个二维 rows x columns 的地图 heights ,其中 heights[row][col] 表…

python的websocket方法教程

WebSocket是一种网络通信协议,它在单个TCP连接上提供全双工的通信信道。在本篇文章中,我们将探讨如何在Python中使用WebSocket实现实时通信。 websockets是Python中最常用的网络库之一,也是websocket协议的Python实现。它不仅作为基础组件在…

抖音小店经营规则解析:避免被扣分的关键因素

抖音小店是一个受欢迎的电商平台,为创业者提供了良好的销售和推广机会。为了确保在抖音小店的运营中不会被扣分或出现其他问题,不若与众整理了几个关键的规则需要注意和遵守。 1. 产品合规性: 抖音小店要求所有销售的产品必须合法合规&#x…

图论专栏一《图的基础知识》

图论(Graph Theory)是数学的一个分支。它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些实体之间的某种特定关系,用点代表实体,用连接两点的线表示两个实体间具有的…

【漏洞修复】Cisco IOS XE软件Web UI权限提升漏洞及修复方法

关于Cisco IOS XE软件Web UI权限提升漏洞及修复方法 文章目录 漏洞基本信息漏洞影响范围确认设备是否受影响漏洞修复方法推荐阅读 漏洞基本信息 Cisco IOS XE Unauthenticatd Remote Command Execution (CVE-2023-20198) (Direct Check) Severity:Critical Vulnerability Pri…

HeartBeat监控Mysql状态

目录 一、概述 二、 安装部署 三、配置 四、启动服务 五、查看数据 一、概述 使用heartbeat可以实现在kibana界面对 Mysql 服务存活状态进行观察,如有必要,也可在服务宕机后立即向相关人员发送邮件通知 二、 安装部署 参照章节:监控组件…

MySQL 教程 2.1.1

MySQL 插入数据 MySQL 表中使用 INSERT INTO 语句来插入数据。 你可以通过 mysql> 命令提示窗口中向数据表中插入数据,或者通过PHP脚本来插入数据。 语法 以下为向MySQL数据表插入数据通用的 INSERT INTO SQL语法: INSERT INTO table_name (colu…

前后端项目开发笔记-环境搭建(一)

一、从https://gitee.com/renrenio/renren-security下载代码 1、项目说明 renren-security是一个轻量级的,前后端分离的Java快速开发平台,能快速开发项目并交付【接私活利器】采用SpringBoot、Shiro、MyBatis-Plus、Vue3、TypeScript、Element Plus、V…

Nacos-NacosRule 负载均衡—设置集群使本地服务优先访问

userservice: ribbon: NFLoadBalancerRuleClassName: com.alibaba.cloud.nacos.ribbon.NacosRule # 负载均衡规则 NacosRule 权重计算方法 目录 一、介绍 二、示例(案例截图) 三、总结 一、介绍 NacosRule是AlibabaNacos自己实现的一个负载均衡策略&…

构建智能外卖跑腿小程序:技术实践与代码示例

在快节奏的现代生活中,外卖跑腿服务已成为人们日常生活中不可或缺的一部分。为了提供更智能、高效的外卖跑腿体验,本文将深入探讨构建一款智能外卖跑腿小程序所需的关键技术,并提供相应的代码示例。 1. 地理位置服务的整合 外卖跑腿小程序…

安防 音响 车载等产品中音频接口选型的高性能国产芯片分析

在人工智能兴起之后,安防市场就成为了其全球最大的市场,也是成功落地的最主要场景之一。对于安防应用而言,智慧摄像头、智慧交通、智慧城市等概念的不断涌现,对于芯片产业催生出海量需求。今天,我将为大家梳理GLOBALCH…