智能优化算法应用:基于阴阳对算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于阴阳对算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于阴阳对算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.阴阳对算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用阴阳对算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.阴阳对算法

阴阳对算法原理请参考:https://blog.csdn.net/u011835903/article/details/108295616
阴阳对算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

阴阳对算法参数如下:

%% 设定阴阳对优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明阴阳对算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/267323.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

近期Chrome浏览器 不知哪个版本升级后原先http强制跳转到https,导致服务端302强制跳转到http也没反应

关于Chrome更新http强制跳转到https解决方法 近期Chrome浏览器 不知哪个版本升级后原先http强制跳转到https,导致服务端302强制跳转到http也没反应一、F12检查加载的Response Headers中有没有Non-Authoritative-Reason二、找了资料后得到解决方案:三、找…

java之“为什么需要数据类型?基本数据类型有哪些?数据类型的应用?”

java之“为什么需要数据类型?基本数据类型有哪些?数据类型的应用?” 一、eclipse操作示例1、完整代码2、运行效果 一、eclipse操作示例 1、完整代码 本文通过利用代码和注解的结合来回答“在java中为什么需要数据类型?基本数据类…

产品入门第一讲:Axure的安装以及基本使用

📚📚 🏅我是默,一个在CSDN分享笔记的博主。📚📚 ​​​ 🌟在这里,我要推荐给大家我的专栏《Axure》。🎯🎯 🚀无论你是编程小白,还是有…

二叉树的创建、销毁、层序遍历与层序遍历的进阶

二叉树的创建 #include <stdio.h> #include <assert.h> #include <stdlib.h> typedef int BTDataType;typedef struct BinaryTreeNode {BTDataType data;struct BinaryTreeNode* left;struct BinaryTreeNode* right; }TreeNode;TreeNode* BuyTreeNode(int x…

【C++】仿函数在模板中的应用——【默认模板实参】详解(n)

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 目录 一.引入&#xff1a;查看(容器)文档时常…

有趣的数学 用示例来阐述什么是初值问题二

一、示例 解决以下初值问题。 解决这个初始值问题的第一步是找到一个通用的解决方案。为此&#xff0c;我们找到微分方程两边的反导数。 即 我们能够对两边进行积分&#xff0c;因为y项是单独出现的。请注意&#xff0c;有两个积分常数&#xff1a;C1和C2。求解前面的方程y给出…

APD--传感器

#1 Current temperature coeffiency Hamamastu Si APD S8664, with same bias, **low temperature**, **higher gain**, it means that **higher current output**. #2, PD

【金华模式】双龙旅游引燃露营设计和文旅产融合新方式

&#xff08;中国国际教育电视台 黎明&#xff09;金华双龙风景旅游区位于浙江省金华市北郊的金华山麓&#xff0c;是一处融自然山水、溶洞群景观、科普探险、康体休闲、避暑度假、观光朝圣于一体的景区。旅游区人文积淀深厚&#xff0c;道、儒、释文化兼收并蓄&#xff0c;东汉…

微信小程序过滤器之计算当前时间差

微信小程序过滤器之计算当前时间差 前言一、wxs简介二、使用步骤1.定义2.使用 前言 最近遇到了一个需求&#xff0c;将小程序里面的具体时间2023-12-11 09:41:06转为当前时间差10小时前&#xff0c;这块可以使用js逻辑函数对数据进行处理&#xff0c;但这里我们采用微信小程序…

Vue2学习笔记(组件嵌套)

示例 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>数据绑定</title><script type"…

Python从入门到精通五:Python函数

函数介绍 学习目标&#xff1a; 快速体验函数的使用了解函数的作用 函数&#xff1a;是组织好的&#xff0c;可重复使用的&#xff0c;用来实现特定功能的代码段。 我们使用过的&#xff1a;input()、print()、str()、int()等都是Python的内置函数。 为什么要学习、使用函…

推荐算法:HNSW【推荐出与用户搜索的类似的/用户感兴趣的商品】

HNSW算法概述 HNSW&#xff08;Hierarchical Navigable Small Word&#xff09;算法算是目前推荐领域里面常用的ANN&#xff08;Approximate Nearest Neighbor&#xff09;算法了。其目的就是在极大量的候选集当中如何快速地找到一个query最近邻的k个元素。 要找到一个query的…