基于深度学习的yolov5入侵检测系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

文章目录

    • 一项目简介
    • Introduction
    • YOLOv5 Overview
    • 入侵检测系统架构
      • 1. 数据采集
      • 2. YOLOv5模型训练
      • 3. 实时监测
      • 4. 告警与反馈
    • 性能评估与优化
  • 二、功能
  • 三、系统
  • 四. 总结

一项目简介

  # YOLOv5-based Intrusion Detection System

Introduction

深度学习(Deep Learning)在计算机视觉领域的广泛应用带来了许多创新。其中,YOLOv5(You Only Look Once,第五版本)是一种基于深度学习的目标检测算法,用于实时检测图像中的物体。本文将介绍基于YOLOv5的入侵检测系统,该系统利用YOLOv5的高效性能来实时监测并识别潜在的入侵行为。

YOLOv5 Overview

YOLOv5是YOLO系列目标检测算法的最新版本,相较于以往版本有更高的检测精度和更快的运行速度。其核心思想是将图像分成网格,并在每个网格上预测边界框及其对应的类别概率,从而实现目标检测。YOLOv5通过引入更深的神经网络和改进的训练策略,取得了在目标检测任务上的显著性能提升。

入侵检测系统架构

1. 数据采集

入侵检测系统首先需要大量标注的图像数据集,包括正常和异常情况下的场景。这些数据用于训练YOLOv5模型,使其能够准确地识别入侵行为。

2. YOLOv5模型训练

使用采集的数据对YOLOv5模型进行训练,调整网络权重以适应入侵检测任务。通过迭代训练,模型能够学习有效地区分正常和异常情况,并提高检测性能。

3. 实时监测

将训练好的YOLOv5模型嵌入入侵检测系统,实现实时监测。系统可通过摄像头、视频流或图像输入源获取数据,并对每一帧进行目标检测,判断是否存在入侵行为。

4. 告警与反馈

一旦检测到入侵行为,系统将触发告警机制,可以通过声音、图像、文本等方式通知相关人员。同时,系统可以记录入侵事件的时间、位置等信息,为进一步分析提供数据支持。

性能评估与优化

入侵检测系统的性能评估通常包括准确率、召回率和检测速度等指标。通过调整模型参数、优化算法和增加训练数据,可以不断提升系统的性能。

二、功能

  环境:Python3.7.4、OpenCV4.5、torch.9.0、PyCharm2020
简介:深度学习之基于YoloV5入侵检测系统(UI界面) 支持图像检测、视频检测二种检测方式,暂时未开发摄像头实时检测。

三、系统

请添加图片描述

请添加图片描述
请添加图片描述

四. 总结

  

基于YOLOv5的入侵检测系统通过结合深度学习和实时监测技术,能够高效地识别和响应潜在的入侵行为。系统的架构和性能优势使其在安防领域得到广泛应用,为提高安全性和减少人工监控工作提供了有效手段。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/267522.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

EASY微服务框架

1 Overview EASY 是一个go语言编写的框架,兼容性支持go版本1.19,go mod 方式构建管理。它是一个轻型,灵活,自定义适配强的微服务框架。 它支持多种网络协议TCP,websocket,UDP(待完成&#xf…

Qt的坐标系系统 - 3个坐标系,2个变换

参考: https://zhuanlan.zhihu.com/p/584048811https://www.zhihu.com/tardis/zm/art/634951149?source_id1005 小谈Qt的坐标系系统 Qt中有三个坐标系 设备坐标系窗口坐标系逻辑坐标系 设备坐标系: 即Device坐标系。也是物理坐标系。即真实的的物理坐标系。 …

Camunda 7.x 系列【60】流程分类

有道无术,术尚可求,有术无道,止于术。 本系列Spring Boot 版本 2.7.9 本系列Camunda 版本 7.19.0 源码地址:https://gitee.com/pearl-organization/camunda-study-demo 文章目录 1. 前言2. 案例演示2.1 后端2.2 前端2.3 测试1. 前言 钉钉中的OA审批分类: 企业级的业务…

Python 反编译Il2Cpp APK

引入 https://github.com/Perfare/Il2CppDumper/ 实现 开源的Ii2Cpp Dumper可以帮助我们将So和globalmetadata.dat文件反编译出 Assembly-CSharp.dll 本博客教程可以帮助我们直接拖入APK反编译出来 调用方式 两种 第一种 拖入后回车运行 第二种 放入运行的根目录下 源码 i…

【Jeecg Boot 3 - 第二天】1.2、jar 包和 lib 依赖分离,部署包缩小100倍

一、场景 二、思路 三、实战 ▶ 2.1、项目 jar 包解压获取 lib config Stage 1:正常打包获取 jeecg-system-start-3.6.0.jar Stage 2:解压 获取如下文件 Stage 3:获取 lib config ▶ 2.2、获取简化版项目jar包 Stage 1&#xff1…

【二者区别】cuda和cudatoolkit

Pytorch 使用不同版本的 cuda 由于课题的原因,笔者主要通过 Pytorch 框架进行深度学习相关的学习和实验。在运行和学习网络上的 Pytorch 应用代码的过程中,不少项目会标注作者在运行和实验时所使用的 Pytorch 和 cuda 版本信息。由于 Pytorch 和 cuda 版…

Altman作了多少恶?排挤首席科学家出GPT5开发、离间董事会、PUA员工

在山姆奥特曼(Sam Altman)被OpenAI董事会突然解职后的几天里,这个消息在科技圈引发轰动,该公司内部员工和许多科技界人士甚至将此举比作一场政变。 奥特曼被解雇后立即传出的说法是,OpenAI的广大员工都很喜欢他&#x…

mmyolo框架中计算各类别的AP@0.5指标

本文所用的mmyolo版本:0.3.0 背景: 首先要知道,mmyolo中在eval和test阶段进行指标计算的时候,对于COCO数据集默认用的就是mAP0.5:0.95,即不同IoU阈值下的mAP计算,并且没有给出各类别的具体指标,如 可以看…

c语言->自定义类型联合体和枚举类型

系列文章目录 文章目录 前言 ✅作者简介:大家好,我是橘橙黄又青,一个想要与大家共同进步的男人😉😉 🍎个人主页:橘橙黄又青_C语言,函数,指针-CSDN博客 目的:学习联合体和枚举类型的…

Xinlinx Vivadao入门学习

#1, 引脚定义 1.1 Bank定义 1.2, 当两个banks的I/O口作为LVDS电平时,HR banks的I/O电压VCCO只能为2.5V,HP banks的I/O口电压为1.8V。两个banks支持LVDS的标准不同,HR I/O banks的I/O只能分配LVDS_25标准,…

运筹学经典问题(二):最短路问题

问题描述 给定一个图(有向图或无向图) G ( V , E ) G (V, E) G(V,E), V V V是图中点的集合, E E E是图中边的集合,图中每条边 ( i , j ) ∈ E (i, j) \in E (i,j)∈E都对应一个权重 c i j c_{ij} cij​(…